
xterm only supports primary selection,
the Adobe Flash player only supports the
clipboard mechanism. If you want to
transfer text from an xterm to a form ren-
dered in Flash player, you’re out of luck.
The Google Chrome browser supports

both primary and clipboard selec-
tion, but if the evernote.com

web application is run-
ning in Chrome, pri-

mary selection no lon-
ger works. At this

point, confusion
reigns.

If you copy an
URL from a text
window and
want to use it
to access and
display the
corresponding
website in a
browser, you
may discover
that the URL in
the text con-

tains a line
break and

that

C
utting text on the desktop with
the mouse and pasting it else-
where is a very useful feature,
and not even the most ardent

supporters of the command line will
deny this fact. If you take a closer look,
the Linux desktop window manager ac-
tually supports two different buffer
mechanisms: primary selection and the
clipboard [1].

If you use the mouse to select a line
of text, you can drop the content of this
primary selection elsewhere by pressing
the middle mouse button. In contrast to
this, the clipboard expects users to trig-
ger the copy mechanism after selecting
something (typically using Ctrl+C or
the Edit | Copy menu in a graphical ap-
plication) and to call the paste function

when they reach the target (Ctrl+V or
Edit | Paste).

Confused Users
Applications can implement one or both
of these approaches, which can cause
confusion and frustration
among users in the
wild. Although,
for example,
a simple

Mike Schilli works as a software engineer
with Yahoo! in Sunnyvale, California. He
can be contacted at mschilli@perl
meister.com. Mike’s homepage can be
found at http:// perlmeister. com.

 Mike SChilli

Perl scripts add useful options to extend cut-and-paste

Grab And Go
With a couple of lines of code, you can create simple Perl scripts that enhance the Linux

desktop’s cut-and-paste feature, adding buffers for time-saving editing. By Mike Schilli

2

Features
Perl: Cut and Paste

April 2012 issue 137 linux-mAgAzine.com | linuxpromAgAzine.com

stand the clipboard mechanism, the
gconf‑editor program in Figure 3 defines
a global key map in Gnome’s Metacity
window manager. If the user presses the
keyboard shortcut, CTRL‑ALT‑c (defined
in the global_keybindings section) after
making a selection, Metacity triggers the
configurable run_command_2 command,

the browser only understands the first
part. Now, I must admit to being a dyed-
in-the-wool, hardcore Unix user. I read
my emails in pine in a screen window,
and to make sure that URLs of this kind
are transferred correctly, I set the value
of editor.singleLine.pasteNewlines to 3
in Firefox’s about:config.

help for Chrome
Unfortunately, Chrome can’t do this, and
that explains why I have a propeller hat
icon in my Gnome panel at the top edge
of the screen with the script from Listing
1 hiding behind it (Figure 1). This script
[2] picks up the URL from the primary
selection, removes any blanks and line
breaks and passes the cleaned URL to
the Chrome browser.

To access the primary desktop selec-
tion, Listing 1 relies on the CPAN Clip-
board [3] module; under the hood, the
module uses the xclip program, which
belongs to Linux’s graphical underpin-
nings, the X Window system. You can in-
stall xclip on Ubuntu by typing sudo
apt‑get install xclip. Compared to
using xclip directly, the CPAN module
offers the benefit that it will also work
on a Mac or Windows computer, be-

cause it automatically switches to the
native clipboard mechanisms on

these two platforms.

Propeller hat
Take-Off

Because the clip-
board module was

installed using

the CPAN shell
with my user ID,
in my home di-
rectory, and not
under root,
local::lib points
the Perl inter-
preter to the local
directory. The
Clipboard class’s

paste method picks up the content of the
current primary selection. Line 10 uses a
regular expression to remove undesir-
able line breaks, and the system com-
mand calls the Chrome browser with the
URL as its argument. If the script in the
form of a “Custom Application
Launcher” is added to the panel with an
easily identifiable icon (Figure 2) by
right-clicking and selecting Add to Panel,
the user only needs to click on the pro-
peller hat after selecting the URL (with-
out the copy command) to tell the
Chrome browser
to start up with
the sanitized URL
so that the
browser can reluc-
tantly follow a
link.

Desktop
Button
Copy
To solve the com-
munication prob-
lem that I men-
tioned earlier on
between xterm and
Flash player, List-
ing 2 grabs the
primary selection
and pushes it onto
the clipboard. To
allow users to run
this command
while working in
an application that
doesn’t under-

01 #!/usr/local/bin/perl

02 use local::lib;

03 use Clipboard::Xclip;

04

 05 my $primary =

06 Clipboard::Xclip

07 ‑>paste_from_selection(

08 "primary");

09

 10 Clipboard::Xclip

11 ‑>copy_to_selection(

12 "clipboard", $primary);

 liSTing 2: primary-to-clipboard

Figure 3: In Gnome’s Metacity window manager, pressing the key-

board shortcut Ctrl+Alt+c runs the command 2 …

Figure 4: … which in turn executes the primary-to-clipboard script in

order to copy the mouse selection to the clipboard.

Figure 1: The Perl script hiding behind the propeller hat grabs the URL

from the primary text selection and launches Chrome with it.

01 #!/usr/local/bin/perl ‑w

02 use strict;

03 use local::lib;

04 use Clipboard;

05

 06 my $browser =

07 "/usr/bin/google‑chrome";

08 my $url = Clipboard‑>paste;

09

 10 $url =~ s/\s+//g;

11

 12 system($browser, $url);

 liSTing 1: chrome-select

Figure 2: The Chrome Launcher, which

launches the Chrome browser with the URL

highlighted in X Window’s primary selection.

Features

3

Perl: Cut and Paste

linux-mAgAzine.com | linuxpromAgAzine.com issue 137 April 2012

with the push or pop argument, the call to
&$command($stack) in line 23 jumps to
one of the functions defined below. Be-
cause the script is not allowed to dynam-
ically call functions given as text strings
in strict mode, the no strict 'refs'
pragma in line 22 temporarily lifts this
restriction. The push() function defined
in line 29 ff. uses the Clipboard class’
paste() method to read the selected text
and push it onto the stack. The pop()
function defined in line 38 copies the ar-
chived content to the primary selection
by calling the copy() method. When the
user presses the middle mouse button,
the archived content tumbles out.

To avoid the need for users to call Perl
scripts in some convoluted way while
juggling with selection content, there are
two entries in the Gnome panel for the
selection stack, represented by two very
attractive icons in the form of arrows
(which I discovered under /usr/share/
icons/Human/48x48/actions as edit‑redo.
png and edit‑undo.png) taking care of
push and pop (Figures 5 and 6).

Note that a calling push and pop in
quick succession doesn’t accomplish
anything useful. You can paste the pri-
mary selection anywhere right away, but
if you want to save the selection in the
archive before making an additional se-
lection, the stack offers the required
functionality in the form of push. If you
no longer need the current selection, you
can retrieve the next archived selection
by issuing a pop.

Click, Click, Click
Instead of retrieving the next chunk
lined up in the clipboard archive after

which points to the script from Listing 2,
as set in the keybinding_commands section
(Figure 4).

This lets the user select text in an ap-
plication that does not support the clip-
board and then bundle the text off into
the clipboard by pressing Ctrl+Alt+c.
In the target application, which doesn’t
support the primary selection, all you
need to do is to press Ctrl+V to insert
the desired text. The script uses the un-
documented paste/copy_from_selection
methods from the derived

Clipboard::Xclip class, because the base
class Clipboard doesn’t allow any dis-
tinctions between the two buffers.

Cut and Paste on
Steroids
Some readers might wish for several cut-
and-paste buffers at times to collect N
different sections and then deposit them
all in another window. On a normal
Gnome desktop, this would involve the
user jumping back and forth N times be-
tween the source and the target, taking a
snippet from the source and dumping it
into the target each time.

To solve this problem, Listing 3 imple-
ments a persistent stack onto which the
user keeps pushing the content of the
primary selection. For this to happen,
clipboard‑stack push creates more space
in the buffer for more selections with
each new one. To replace the current se-
lection with one recently stored in the
stack, the user calls clipboard‑stack pop.
The script stores the values in the
@$stack array, using the CPAN YAML mod-
ule to write the array content persis-
tently to the .clipboard file in the user’s
home directory.

When the script is called the next
time, the YAML module’s LoadFile()
method reads the stored data. Depend-
ing on whether the user calls the script

01 #!/usr/local/bin/perl ‑w

02 use strict;

03 use local::lib;

04 use Clipboard;

05 use YAML

06 qw(DumpFile LoadFile);

07

 08 my ($home) = glob "~";

09 my $clipboard =

10 "$home/.clipboard";

11

 12 my $stack = [];

13 $stack = LoadFile($clipboard)

14 if ‑f $clipboard;

15

 16 my ($command) = @ARGV;

17

 18 die "usage: $0 [push|pop]"

19 if !defined $command;

20

 21 {

22 no strict 'refs';

23 &$command($stack);

24 }

25

 26 DumpFile($clipboard, $stack);

27

 28 #############################

29 sub push {

30 #############################

31 my ($stack) = @_;

32

 33 push @$stack,

34 Clipboard‑>paste;

35 }

36

 37 #############################

38 sub pop {

39 #############################

40 my ($stack) = @_;

41

 42 Clipboard‑>copy(

43 pop @$stack);

44 }

 liSTing 3: clipboard-stack

Figure 5: Adding the Clipboard Stacker to the

Gnome panel.

Figure 6: The Green Arrow pushes the

current selection onto the stack and the

orange arrow retrieves it from there.

01 #!/usr/local/bin/perl ‑w

02 use strict;

03

 04 my @words =

05 qw(yes no maybe so);

06

 07 for my $word (@words) {

08

 09 open my $pipe, "|‑",

10 qw(xclip ‑verbose

11 ‑selection CLIPBOARD ‑loops 2);

12

 13 print $pipe $word;

14 close $pipe or die;

15 }

 liSTing 4: multipaste

Features
Perl: Cut and Paste

4 April 2012 issue 137 linux-mAgAzine.com | linuxpromAgAzine.com

every paste, it would be downright revo-
lutionary to allow the user to click N
times and each time automatically fol-
low the primary selection with the next
archived item. This would help, say, by
filling out web or PDF forms if you know
the order of the fields and have orga-
nized the data in extended clipboard
buffers in the correct order. In this case,
the user would just need to jump from
field to field and issue a paste command
in each one.

Listing 4 implements this approach by
calling xclip directly. In contrast to the

script introduced earlier, instead of using
the primary selection, it uses the clip-
board buffer, which is filled by pressing
Ctrl+C (Edit | Copy) and emptied by
pressing Ctrl+V (Edit | Paste). The rea-
son is just because I originally wrote the
script for filling out form data in a Flash
player application. If you leave out ‑se‑
lection CLIPBOARD, it will instead access
the primary selection; then, rather than
pressing Ctrl+V multiple times, you can
just keep hitting the middle mouse but-
ton.

The script iterates over a row of words
(yes, no, maybe so), pushing them one
by one onto the clipboard and waiting
(‑loops 2) rounds until the user releases
the current selection with the paste com-
mand. This action reanimates the block-
ing xclip command and the Perl script
loop enters the next round. A subse-
quent call to xclip is then handed the
next word via the pipeline opened by
open.

In Figure 7, the user has accessed the
various fields in a registration form using
the mouse or the tab key, after calling

multipaste in another window, and has
pressed Ctrl+V to trigger a paste process
in each case. One after another, the
words bundled into the buffer come
tumbling out.

In other words, if you need to regu-
larly fill out of the same web forms, and
you can’t automate the process by using
APIs or a screenscraper, you can use
scripts such as multipaste to prepare the
values in the right order. Then, later you
can zip from field to field and enter the
correct values without having to think,
without worrying about typos, in fact
without any worries at all. nnn

Figure 7: The user first called multipaste,

then moved from field to field, and pressed

Ctrl+V in each case.

1/2 Ad
with bleed

[1] “X Selections, Cut Buffers, and Kill
Rings” by Jamie Zawinski:
http:// www. jwz. org/ doc/
 xcutandpaste. html

[2] Listings for this article:
 ftp:// www. linuxmagazin. de/ pub/
 listings/ magazin/ 2012/ 03/ Perl

[3] CPAN clipboard module:
http:// search. cpan. org/ ~king/
 Clipboard0. 13/

 infO

Features
Perl: Cut and Paste

5linux-mAgAzine.com | linuxpromAgAzine.com issue 137 April 2012

