
tain the map’s underlying XML data.
This opens up the door for creative tin-
kering.

The data model is extremely simple:
So-called “nodes” designate waypoints,
defined by their geographical longitude
and latitude in the physical world. Two
nodes may be connected by a so-called
way in the data model, mapping the
course of a street, which may be made
up by one or more way objects.

Figure 2 shows the XML represen-
tation of the OSM data for San
Francisco’s Sutter Street, close to
the city’s highest skyscrapers. A
single click on the Export tab in
the map view displays the dialog
shown in Figure 3, and after you

select the XML option and press the
Submit button, your web browser

will download an XML file of the

I
f you take a look at the current
OpenStreetMap of downtown San
Francisco (Figure 1), or any other
major city of the world, you will see

astonishingly detailed map data that has
been meticulously collected and up-
dated by volunteers using portable
GPS devices. The project doesn’t
just plot streets and assign
names; it also locates bus
stops, train tracks, and cycle
paths. Thanks to its crowd-
source approach, Open-
StreetMap (OSM) is fre-
quently more up to date
than commercial provid-
ers like Google Maps when
it comes to stores and res-
taurants that change their
names frequently.

Free Data
Instead of
Google Maps
One advantage compared
with commercial providers

is that you are free to download the map
data and use it pretty much any way you
like. You can click on the website’s Ex-
port button or use an API to access api.
openstreetmap.org with a program to ob-

Perl script fights parking tickets

 Parking Aid
Volunteers mapping neighborhood streets for the free OpenStreetMap project

really do pay attention to detail, such as neigborhood parking zones. This

month’s Perl scripts query the data. By Michael Schilli

Mike Schilli works as a software
engineer with Yahoo! in Sunnyvale,
California. He can be contacted at
mschilli@perl meister.com. Mike’s

homepage can be found at
http:// perlmeister. com.

 MIke SchIllI

2

Features
Perl: Retrieving OpenStreetMap Data

January 2012 Issue 134 lInux-magazIne.com | lInuxpromagazIne.com

practically arbitrary extensions. The de-
sign is so flexible that new functions can
be added quickly and unbureaucrati-
cally.

Although this hands-off approach en-
courages and empowers volunteer map-
pers, the disadvantages are uncontrolled
extensions and significant data redun-
dancy, which brings tears to the eyes of
supporters of standardized database
schemas. As the data gets interpreted
worldwide by different applications, it
needs to conform to agreed-upon stan-
dards, however. The undoubtedly re-
quired coordination process normally
occurs on the OSM wiki and its Talk
pages [2]. For example, if somebody sug-
gests a new scheme for mailboxes or
business opening hours, this typically
prompts a heated discussion which often
leads to a new standard.

Do-It-Yourself Mapping
Before you can start contributing, you
need to register as a mapper by supply-
ing your email address and creating a
user account with a password. As on
Wikipedia, mappers can make changes
to the mapping data directly in the OSM

area you are viewing. The way definition
in the lower part of Figure 2 contains ref-
erences to a total of eight nodes, denoted
as nd elements in the XML. Two of them,
65303531 and 1206753813, are visible as
node definitions in the top part of the
file.

Besides the geographical coordinates,
lat and lon, or the geographical latitude
and longitude in digital format, a node
also lists who recorded it (user) and
when (timestamp), as well as specifying
the changeset in which the data were up-
loaded to the OSM server.

Just to compare the freely available
data with what proprietary Google Maps
has in store, you could take the latitude
and longitude of the two nodes listed in
the XML file in Figure 3 and plug them
into Google Maps. You will see that it al-
most exactly matches the Sutter Street

layout depicted in
Figure 4.

Ways Make
Streets
A street comprises
one or multiple
ways in the OSM
database’s XML.
The way definition
includes the name
of the street to which it belongs in its
name tag. The second to last XML <tag>
line in Figure 3 thus assigns a value of
v="Sutter Street" to the k="name" key of
the way. Note that San Francisco’s Sutter
Street is longer than the way definition
covered here. It is not uncommon that
streets consist of several way definitions
with identical name tags to allow for de-
scribing different street properties in dif-

ferent neighbor-
hoods the street is
winding through.

Flexible
Strategy
The project has
standardized the
way tags shown in
the XML in Figure
3: highway (what
kind of street it
is), lanes (number
of lanes), name (the
street name), and
oneway (set to
"yes" if it’s a one-
way street), but it
also supports

Figure 1: The OpenStreetMap project displaying a free map of down-

town San Francisco.

Figure 2: The OpenStreetMap server exports map data as freely

licensed XML.

Figure 3: The XML data that drive the map are available for public

download and use.

Figure 4: Freely licensed OSM data plugged into Google Maps.

Features

3

Perl: Retrieving OpenStreetMap Data

lInux-magazIne.com | lInuxpromagazIne.com Issue 134 January 2012

ure 8 seem to have asserted themselves
for street parking rules across the globe.
The first three tags describe residential
parking, the second block describes the
street cleaning time for the left-hand
side, and the third block does the same
for the right-hand side of the street.

But how do you define “left” and
“right”? Ways in OSM always point in
one direction because they show you the
way from one node to another. This is
usually irrelevant for the mapped street
(with one-way streets being the excep-
tion) and often simply reflects the arbi-
trary choice of the mapper.

In the case of San Francisco’s parking
rules, the direction allows you to define
precisely when the street sweeper will

database, and data are immediately visi-
ble on the live server without any cross-
checking. A number of editing tools are
available – headed by the online editors
JOSM [3] and Potlatch [4]. JOSM is fairly
long in the tooth, and its cross-platform
Java look is an interface that doesn’t ap-
peal to aesthetes, but it gets the job
done. In contrast, Potlatch is a Flash ap-
plication that runs directly in the
browser; it has a polished finish and has
become the standard for editing maps.

For this article, I will add parking and
street-cleaning information for the
streets of my neighborhood in San Fran-
cisco. Firing up any browser with Flash
support and clicking the Edit button on
openstreetmap.org, brings up an editable
map. Selecting a street outlines the cur-
rent way in yellow and shows its nodes in
red (Figure 5). The left pane has Simple
and Advanced tabs at the bottom. Select-
ing Advanced brings up all the way’s
tags, including the name of the street it
describes.

Using the Add button, I added all the
parking tags you see in Figure 5, and
then I simply pressed the Save button at
the top of the edit window, which asked
me for a comment before submitting my
changes to the server.

Wild West Parking Rules
Like any other major city in the world,
San Francisco is completely mapped in
OpenStreetMap. That said, San Francis-
co’s complicated parking rules are a
major challenge to automobile-driving
tourists. It seemed worthwhile to inte-
grate these bureaucratic regulations into
the free world map.

If you have always thought that park-
ing here is similar to the Wild West,

you’re wrong. On 23rd Street, around
the corner from where I live, cars with-
out a resident permit can park just two
hours Monday through Friday from 8am
to 6pm. Residents with a “Z” parking
permit are the exception to this rule.

Additionally, the street sweeper [5]
drives along most streets in San Fran-
cisco on certain days, and nobody is al-
lowed to park on the side of the street
that needs to be swept during that time.
If you ignore the rule and park while the
street sweeper comes by, you will be pe-
nalized with a US$ 55 parking ticket by
one of the “Interceptor” cars following
the sweeper. The street sign in Figure 6
shows you the details of the parking
rules. The rules seem to differ from
crossroad to crossroad, following an ar-
cane strategy that only the city street
sweeper department seems to know.

It might take awhile for San Francis-
co’s parking rules to find their way into
the OSM database for the whole city.
However, it looks like the Germans are a
step ahead here. You can see from Figure
7 that mappers have more or less re-
corded all the parking zones in the Ba-
varian town of Bamberg, as displayed by
the parking.openstreetmap.org site,
which is dedicated to parking informa-
tion, showing parking discs at the appro-
priate locations. The wiki with the pro-
posal for the street parking tag format
[6] lists other cities that are advanced in
this respect.

Parking Bureaucrats at
Work
Parking wasn’t standardized on OSM
until recently, but after a lengthy discus-
sion process, the
tags shown in Fig-

Figure 5: The Potlatch editor comes up after pressing the Edit button

on openstreetmap.org.

Figure 6: Resident parking with street

sweeping every two weeks.

Mike: I couldn’t
find the parking.
openstreetmap.
org site. ‑rls

Figure 7: The parking zones in downtown Bamberg are more or less

completely recorded (parking.openstreetmap.org).

4

Features
Perl: Retrieving OpenStreetMap Data

January 2012 Issue 134 lInux-magazIne.com | lInuxpromagazIne.com

drive on which side of the street, in the
case of different cleaning times for the
two sides.

Figure 5 shows the Potlatch editor in-
serting a new tag by the name of
parking:condition:left:maxstay into a
way which marks sections of Chatta-
nooga Street with a maximum parking
time of two hours for cars without resi-
dential parking permit.

To make things
even more compli-
cated, in some
neighborhoods,
the street sweeper
only comes
around every sec-
ond week of the
month. Luckily,
this can also be

expressed using an OSM standard that
has already been approved. Opening
hours of businesses and government
agencies also follow similar rules, which
prompted OSM mappers to suggest using
the existing syntax for parking rules. The
wiki [7] explains who was responsible
for this and when it happened. To make
a long story short, the expression
"Fr[2,4] 09:00‑11:00" specifies the sec-

ond and fourth Friday in the month for
the street sweeper to come by between
9am and 11am.

Immediately Visible
After uploading, usually the whole
world can see the change in the XML im-
mediately and see it on the map after a
few hours of delay. But the really excit-
ing thing about this story is that any ap-
plication can now use the newly re-
corded data freely. How about a script
that tells me when the street cleaner is
due if I tell it that I parked my car on the
right-hand side of Chattanooga Street be-
tween 23rd and 24th Street?

The script in Listing 1 automatically
downloads the XML data from the OSM
server and outputs the right answer in
just a couple of seconds:

Figure 8: After uploading the data to the OSM server, the whole

world now knows when you can park on San Francisco’s 23rd Street.

001 #!/usr/local/bin/perl ‑w

002 #############################

003 # street‑cleaning ‑ Find

004 # street cleaning times

005 # between cross streets.

006 # Mike Schilli, 2012

007 # (m@perlmeister.com)

008 #############################

009 use strict;

010 use Geo::Parse::OSM;

011 use Graph::Directed;

012 use LWP::UserAgent;

013

 014 my @bbox =

015 qw(‑122.4374 37.74754

016 ‑122.42096 37.75894);

017

 018 my $url =

019 "http://api.openstreetmap."

020 . "org/api/0.6/map?bbox="

021 . join ',', @bbox;

022

 023 my $mapfile = "map.osm.gz";

024

 025 my ($street_on,

026 $street_cross1,

027 $street_cross2, $side)

028 = @ARGV;

029

 030 die "usage: $0 street " .

031 "cross1 cross2 side"

032 if !defined $side;

033

 034 my $ua =

035 LWP::UserAgent‑>new();

036 $ua‑>default_header(

037 "Accept‑Encoding", "gzip");

038

 039 if (!‑f $mapfile

040 or ‑M $mapfile > 7) {

041 my $rsp = $ua‑>mirror($url,

042 $mapfile);

043 $rsp‑>is_success

044 or die $rsp‑>message();

045 }

046

 047 my $osm = Geo::Parse::OSM‑>

048 new($mapfile);

049

 050 my %on_nodes = ();

051

 052 street_nodes(

053 $osm, $street_on,

054 sub {

055 $on_nodes{ $_[0] } = 1; }

056);

057

 058 my $cross1_node =

059 cross_find($osm,

060 \%on_nodes, $street_cross1);

061 my $cross2_node =

062 cross_find($osm,

063 \%on_nodes, $street_cross2);

064

 065 my ($nodes, $flip_order) =

066 find_path_on_way($osm,

067 $street_on, $cross1_node,

068 $cross2_node);

069

 070 $side = flipside($side,

071 $flip_order);

072 my $parking = parking($osm,

073 $nodes, $side);

074

 075 print "Street Cleaning: ",

076 street_cleaning($parking),

077 "\n";

078

 079 #############################

080 sub street_nodes {

081 #############################

082 my ($osm, $name, $cb) = @_;

083

 084 $osm‑>seek_to(0);

085 $osm‑>parse(

086 sub {

087 my ($n) = @_;

088 if (exists

089 $n‑>{tag}‑>{name} and

090 $n‑>{tag}‑>{name} eq

091 $name) {

092 for my $n (

093 @{ $n‑>{chain} }) {

094 $cb‑>($n) or last;

095 }

096 }

097 },

098 only => "way"

099);

100 }

101

 102 #############################

 lIStInG 1: street-cleaning

Features
Perl: Retrieving OpenStreetMap Data

5lInux-magazIne.com | lInuxpromagazIne.com Issue 134 January 2012

information to craft a URL for the OSM
server API, and line 41 mirrors the com-
pressed XML file as map.osm.gz on my
local hard disk.

The if condition in lines 39 to 45
checks to see whether the file already
exists and is no more than a week old,
and it prevents the retransmission of rel-

$./street‑cleaning U

 "Chattanooga Street" U

 "23rd Street" U

 "24th Street" right U

 Street Cleaning: We[2,4] 08:00‑10:00

For this to happen, Listing 1 first re-
quests an XML file from the OSM server

for the Noe Valley neighborhood in San
Francisco. In a download form similar to
the one shown in Figure 3, I’ve figured
out that that my neighborhood covers an
area between -122.4374 and -122.42096
degrees longitude and between 37.74754
and 37.75894 degrees latitude on the
globe. Lines 18-21 in Listing 1 use this

103 sub cross_find {

104 #############################

105 my ($osm, $on_nodes,

106 $cross_street) = @_;

107

 108 my $found;

109

 110 street_nodes($osm,

111 $cross_street,

112 sub {

113 my ($n) = @_;

114 if (exists

115 $on_nodes‑>{$n}) {

116 $found = $n;

117 return 0; # stop

118 }

119 return 1; # continue

120 }

121);

122

 123 return $found;

124 }

125

 126 #############################

127 sub find_path_on_way {

128 #############################

129 my ($osm, $way_name, @nodes)

130 = @_;

131

 132 my $g =

133 Graph::Directed‑>new();

134

 135 $osm‑>seek_to(0);

136 $osm‑>parse(

137 sub {

138 my ($n) = @_;

139 if (

140 exists $n‑>{tag}‑>{name}

141 and $n‑>{tag}‑>{name} eq

142 $way_name)

143 {

144 $g‑>add_path(

145 @{ $n‑>{chain} });

146 }

147 },

148 only => "way"

149);

150

 151 my $flip_order = 0;

152

 153 my @path =

154 $g‑>SP_Dijkstra(@nodes);

155

 156 if (!@path) {

157 @nodes = reverse @nodes;

158 @path =

159 $g‑>SP_Dijkstra(@nodes);

160 $flip_order = 1;

161 }

162

 163 return (\@path,

164 $flip_order);

165 }

166

 167 #############################

168 sub parking {

169 #############################

170 my ($osm, $nodes,

171 $side) = @_;

172

 173 my %to_match =

174 map { $_ => 1 } @$nodes;

175 my %results = ();

176

 177 $osm‑>seek_to(0);

178 $osm‑>parse(

179 sub {

180 my ($w) = @_;

181

 182 my @matches =

183 grep {

184 exists $to_match{$_}

185 } @{ $w‑>{chain} };

186

 187 return if @matches < 2;

188

 189 for my $tag (

190 keys %{ $w‑>{tag} }) {

191 if ($tag =~

192 /parking:condition:$side:.*/

193) {

194 $results{$tag} =

195 $w‑>{tag}‑>{$tag};

196 }

197 }

198 },

199 only => "way"

200);

201

 202 return \%results;

203 }

204

 205 #############################

206 sub street_cleaning {

207 #############################

208 my ($parking) = @_;

209

 210 for my $key (keys %$parking)

211 {

212 if ($key =~ /(.*)\:reason/)

213 {

214 if ($parking‑>{$key} eq

215 "street_cleaning") {

216 return $parking‑>{ $1

217 . ":time_interval" };

218 }

219 }

220 }

221

 222 return undef;

223 }

224

 225 #############################

226 sub flipside {

227 #############################

228 my ($side, $flip_order)= @_;

229

 230 if ($flip_order) {

231 if ($side eq "left") {

232 $side = "right";

233 } else {

234 $side = "left";

235 }

236 }

237

 238 return $side;

239 }

 lIStInG 1: street-cleaning (continued)

6

Features
Perl: Retrieving OpenStreetMap Data

January 2012 Issue 134 lInux-magazIne.com | lInuxpromagazIne.com

ing times, this provides valid informa-
tion for querying users.

If a change of direction was initiated
because no valid path could be found in
the original directions, the flipside()
function, defined as of line 226 and
called in line 70, converts any "left"
string into "right" and vice versa to help
finding the correct side-specific parking
rules. The street_cleaning() function, as
of line 206 then simply needs to discover
any existing parking tags, extract the ap-
propriate side of the street (“left”/
“right”), and output the data to tell tour-
ists and residents alike wanting to park
there when to expect the street cleaner.

Future
In the next couple of weeks, I’ll carry on
collecting the parking data in my home
district, “Noe Valley” in San Francisco,
and upload it to the server. I have a vi-
sion of a web application that lets me
enter the current location of my street-
parked second car, Perly Perlman, and
notifies me by mail if the street cleaner
with the parking ticket Piaggo [9] in its
wake is due the next day. This is some-
thing that could really pay its way. nnn

ple. Starting at N2, the algorithm now
needs to move in one direction, hoping
that it will arrive at N5, and not run up
against a dead end in N1.

Fortunately, algorithm guru Edsger W.
Dijkstra solved this problem back in
1959 [8], and the Graph module from
CPAN sports the algorithm in its SP_Di‑
jkstra() method. The latter only expects
that two nodes are be connected some-
how in a “Directed Acyclic Graph”
(DAG) and then computes the shortest
path from N2 to N5.

The find_path_on_way() function de-
fined in lines 127 to 165 takes two argu-
ments: the street name and an array of
two nodes to connect it. It starts by cre-
ating a new Graph::Directed object and
adds paths to it, connecting the nodes of
every XML way definition covering the
specified street.

To accomplish this, Geo::Parse::OSM
finds a way’s nodes by referencing the
way’s chain attribute. If the SP_Dijk‑
stra() method can’t find a path from A
to B, the arbitrarily selected directional
arrows between the nodes must be
pointing in the wrong direction, and line
157 reverses the search direction, mak-
ing a note of this fact in the flip_order
variable, so that the main program later
understands that “left” in this case
doesn’t mean “left” in the direction
taken by the way, but “right.”

Upon receiving the find_path_on_way()
result, consisting of a valid node path
between cross streets and a potentially
modified flip_order, the parking() func-
tion browses through the path of nodes
and stores the last parking tag discov-
ered on the ways through which it trav-
els. Assuming that the parking regula-
tions don’t change within a single street
block, which is the case for street clean-

atively new data to speed up the process.
The additional Accept‑Encoding header in
line 37 tells the server that the client pre-
fers a gzipped file.

OSM Data Gobbler
The Geo::Parse::OSM module from CPAN
picks its way through the XML data, and
its parse() method expects a callback
that it jumps to whenever it finds the el-
ement you are looking for. Note that
parse() will not find anything if it has al-
ready run once and that seek_to(0) is re-
quired to return the parser to the start of
the XML data file and thus launch a new
search.

To answer questions about the parking
conditions on a street between two cross
streets, the script has to find one or more
OSM ways located in this section of the
street. In line 52, it uses the function
street_nodes to find a street’s node IDs
and store them as keys in the %on_street
hash. To accomplish this, the street_
nodes function (defined in lines 80-100)
searches through all of the ways in the
XML file with the restriction only =>
"way" for a way that has the value of the
given street in its name tag. As is typical
for a parser, it uses a callback executed
every time it finds something suitable.

edsger Dijkstra to the
Rescue
Armed with the nodes of the main street,
the calls to cross_find() (defined as of
line 103) in lines 59 and 62 find the
nodes in which the crossroads defined
on the command line intersect with the
main street. This can get pretty compli-
cated, however, if the distance between
two intersections consists of several
ways with many different nodes. Take
nodes N2 and N5 in Figure 9, for exam-

[1] Listings for this article:
http:// www. linuxpromagazine. com/
 Resources/ Article‑Code

[2] Discussion about the new parking
tags on the OpenStreetMap wiki:
http:// wiki. openstreetmap. org/ wiki/
 Talk:Proposed_features/ parking:lane

[3] OSM editors, JOSM:
http:// josm. openstreetmap. de

[4] OSM editors, Potlatch:
http:// wiki. openstreetmap. org/ wiki/
 Potlatch_2

[5] “Street Cleaning in San Francisco”:
http:// www. youtube. com/ watch?
 v=kLR0uxooEf8

[6] Wiki for the new parking tags:
http:// wiki. openstreetmap. org/ wiki/
 Proposed_features/ parking:lane

[7] Standards for business hours in
OpenStreetMap:
http:// wiki. openstreetmap. org/ wiki/
 Key:opening_hours

[8] “Dijkstra algorithm”:
http:// en. wikipedia. org/ wiki/
 Dijkstra%27s_algorithm

[9] Parking ticket Piaggio in San Fran-
cisco: http:// usarundbrief. com/ 31/
 images/ wespe. html

 InFO

Figure 9: The Dijkstra Algorithm determines the shortest path between N2 and N5.

Features
Perl: Retrieving OpenStreetMap Data

7lInux-magazIne.com | lInuxpromagazIne.com Issue 134 January 2012

