
borders, except for some guest systems
that allow a shared focus. To leave the
virtual system focus, you need to press a
predefined key (the default is the right
Alt key); this takes the mouse pointer
back to your desktop.

Freezing and Thawing
Efficient snapshot technology lets you
freeze a virtual machine’s state and re-

I
f you are continually trying out new
Linux distributions, you will proba-
bly be able to use a virtualizer like
VMware, KVM, Xen, or VirtualBox

blindfolded. But programmers who need
to develop code for different Linux ver-
sions or, heaven forbid, Windows ver-
sions, also appreciate locally available
virtual machines for quick tests.

The VirtualBox [2] virtualization pack-
age is easily controlled through its at-
tractive GUI (Figure 1) and is easily
downloaded as an Ubuntu package
under the GPLv2 license (Figure 2).

Users can quickly create a handful of
guest systems using installation CD/
DVDs or ISO files and boot the guests in
separate windows at the press of a but-
ton. Mouse control on the guest system

needs some getting used to;
once the guest system

has grabbed the
mouse focus, it

doesn’t let go.
The mouse

pointer won’t
move out-

side of the
guest
system

win-
dow

Perl script cleans up virtual machines

 Freshen Up
A VirtualBox installation creates snapshots of virtual machines in next to no time at the

command line; it also helps protect your privacy while browsing and sends Perl modules

through a smoke test. By Mike Schilli

Mike Schilli works as a software engineer
with Yahoo! in Sunnyvale, California. He
can be contacted at mschilli@perl
meister.com. Mike’s homepage can be
found at http:// perlmeister. com.

 Mike Schilli

Figure 1: VirtualBox with some Ubuntu and

Windows versions as guest systems.

Figure 2: Synaptic listing of Ubuntu packages

that install VirtualBox.

2

Features
Perl: VirtualBox Snapshots

November 2011 Issue 132 lINux-magazINe.com | lINuxpromagazINe.com

The script uses the tap command from
the CPAN Sysadm::Install module to
issue shell commands. Of course, it
might be easier to implement the pro-
gram as a shell script, but experienced
Perl programmers know it’s only a mat-
ter of time until the functional scope of a
shell script has grown to the extent that
you will want to reimplement it in Perl
for fear of not being able to maintain the
monster.

The script uses the subcommands
startvm and ctrlvm poweroff provided by
VBoxManage to start and shut down the
virtual machine. It restores a snapshot
both at the start and at the end of the
script to make quite sure that the virtual
machine boots into the snapshotted
“Browse” state, even if somebody has
messed around in the Snapshot menu of
the VirtualBox GUI in the meantime.

limited Networking
VirtualBox virtual machines can also be
managed in headless mode without any
screen output. An invisible SSHD dae-

store it in a couple of seconds. This
means that web surfers can use a freshly
installed Ubuntu with an open browser
for embarrassing web searches (Figure
3).

The torrid details of what Google
knows about its users are always re-
vealed when you enter a search key and
the autocomplete function does the rest.
After all, nobody wants to be reminded
that they searched for “athlete’s foot”
just a couple of days ago, not to mention
the influence that the search term has on
longer-term targeting by Google’s per-
sonalized advertising machine.

Paranoid penguin friends will not
want to keep the cookies they received
for longer than necessary or to leave any
tracks in the browser history. Because
there’s no way of knowing exactly what
the browser does behind your back in
terms of caching and other data storage,

it only makes
sense to fire up a
virtual machine
quickly for sensi-
tive searches and
then to restore the
virtual machine’s
original status
when you’re done.

This approach
isn’t entirely wa-
tertight; if you’re
combating a mas-
termind, they
might find data
snippets on the
virtual hard disk,
and the IP address
of your router will
appear in Google’s

logs, but it does raise the bar consider-
ably. If you need more privacy, you
might like to use Tor [3] and also run
shred against the virtual machine disk,
which is a single file.

Shortly after installing Linux from the
DVD, users who are interested in pro-
tecting their privacy will launch the Fire-
fox browser in the brand-new guest sys-
tem and create a snapshot of the virtual
machine (Figure 4).

After completing his secret mission,
the user then powers off the virtual ma-
chine using the Stop command and then
switches back to the original state by se-
lecting the Restore function in the Virtu-
alBox snapshot menu. The next time you
launch the virtual machine you will have
an open browser that doesn’t remember
a thing – just as if you’d jumped back in
time.

Automated command
Instead of clicking around in the menus
to launch the VirtualBox GUI every time
you want to research something, you
might prefer to use a Perl script that au-
tomates the process of selecting and
booting the virtual machine. When
you’re done, you press the Enter key in
the script to shut down the virtual ma-
chine and restore its original state. Luck-
ily, VirtualBox offers the VBoxManage tool,
which gives you complete control at the
command line. Listing 1 shows the Perl
script that selects the virtual machine
named “Ubuntu 10.04” and its “Browse”
snapshot, which I prepared previously
(see the list of snapshots in Figure 1).

Figure 3: The browser will have forgotten this embarrassing search

term the next time you fire up the virtual machine.

Figure 4: The user creating a snapshot of the

virtual machine state.

01 #!/usr/local/bin/perl ‑w

02 #############################

03 # browse ‑ VM for browsing

04 # Mike Schilli, 2011

05 # (m@perlmeister.com)

06 #############################

07 use strict;

08 use Sysadm::Install qw(:all);

09 use Log::Log4perl qw(:easy);

10

 11 Log::Log4perl‑>easy_init(

12 $DEBUG);

13

 14 my $vbm = "VBoxManage";

15 my $vm = "Ubuntu 10.04";

16

 17 tap $vbm, "snapshot", $vm,

18 "restore", "Browse";

19 tap $vbm, "startvm", $vm;

20

 21 print

22 "Press Enter for shutdown";

23 <STDIN>;

24

 25 tap $vbm, "controlvm", $vm,

26 "poweroff";

27 tap $vbm, "snapshot", $vm,

28 "restore", "Browse";

 liSTiNg 1: browse

Features
Perl: VirtualBox Snapshots

3lINux-magazINe.com | lINuxpromagazINe.com Issue 132 November 2011

After restarting the virtual machine,
the host can issue the VBoxManage guest‑
property enumerate "Ubuntu 10.04" com-
mand and, hidden in a mass of other in-
formation, receive the line "Name: /Vir‑
tualBox/GuestInfo/Net/0/V4/IP, value:
192.168.0.135", which gives you the IP
used by the virtual machine. If you run
get for the guestinfo path shown above
instead of enumerate, you are sent the IP
address of the active virtual machine di-
rectly (Figure 9).

Smoking chimneys
Another use case for virtual machines is
testing CPAN modules in pristine envi-
ronments. Assuming CPAN modules do
a good job of specifying their dependen-
cies on other modules, a CPAN shell will
handle the installation without breaking
a sweat. Unfortunately, some authors
forget to specify modules they have on
their development machines that a va-
nilla Perl installation will not include.
This causes much frustration among
users – except for cases in which one of
today’s ubiquitous and automatically ac-
tivated CPAN smoke tests identify a
problem and notify the author via email.

mon running on the guest system lets
you execute commands from the host
system or exchange files between guest
and host.

That said, VirtualBox launches guest
systems in NAT (Network Address Trans-
lation) mode by default, assigning them
an address on the virtual 10.x.x.x net-
work, and using address translation to
communicate with the host’s local net-
work in a similar approach that most
routers in private homes take to let the
local devices with their 192.168.x.x ad-
dresses communicate with the Internet.
This works fine from the virtual machine
to the local network; however, the host
and the devices on the local network
can’t open a connection to the virtual
machine. The Network Adapters dialog
hidden behind the icon with the two ter-
minals bottom right on an active virtual
machine (Figures 5 and 6) allows you to
change this behavior.

Bridge Opens Firewall
If you change the setting from NAT to
Bridged Mode, the virtual machine re-

trieves an IP ad-
dress from the
DHCP server on
the local network
(e.g., 192. 168. 0.
135), becoming a
peer communica-
tion partner. If you
launch an SSHD
daemon with

sudo apt‑get U

 install U

 openssh‑server

on the virtual ma-
chine, clients on
the host or on the
local network that
log in to the vir-
tual machine (ssh 192.168.0.135) with
their user IDs are granted access. If the
user also copies their SSH public key
(e.g., ~/.ssh/id_rsa.pub) to the ~/.ssh/
authorized_keys file on the virtual ma-
chine, they don’t even need a password
– and this is important for automated
scripts, assuming the private key was
created without a passphrase.

However, it’s not always easy to find
out which IP address a specific virtual
machine has picked up when it
launches. VirtualBox offers a method via
guest properties; an extension that you
first need to install on the active virtual
machine after selecting Devices | Install
Guest Additions (Figure 7).

After doing so, the virtual machine
downloads an ISO file off the Internet,
mounts the file like a CD drive on the
virtual machine, and executes a shell
script stored on the CD that triggers an
orgy of kernel module builds.

Manual Attention
Needed
Unfortunately, this approach didn’t work
in the VirtualBox version that I was
using, 3.1.6; I had no alternative but to
download VBoxGuestAdditions_3.1.6.iso
manually to the virtual machine, mount
the file using a mount ‑o loop, install the
dkms Ubuntu package, and then execute
the VBoxLinuxAdditions‑x86.run shell
script from the command line (Figure 8).
Note that this will not work with Ubuntu
11 as the guest system if the host system
is still running Ubuntu 10.04, which
seems to require platform parity.

Figure 5: Right-clicking the icon with the two

terminals leads to a dialog box for setting up

the network adapter.

Figure 6: The Bridged Adapter in the network

dialog supports bidirectional communications

between the virtual machine and the rest of

the world.

Figure 7: Installing Guest Additions gives

you useful utilities for VirtualBox VMs.

Figure 8: Installing the Guest Additions on 10.04 takes a fair bit of

manual TLC.

Figure 9: The guestproperty command shows

you which IP address the specific virtual

machine has picked up from the DHCP server.

4

Features
Perl: VirtualBox Snapshots

November 2011 Issue 132 lINux-magazINe.com | lINuxpromagazINe.com

A Perl installation stored as a virtual
machine snapshot that the module pro-
grammer can boot with the cpan‑smoke
script (Listing 2) is a big help here. You
just pass in your newly created CPAN
distribution tarball and let a CPAN shell
test whether the new version is install-
able on the vanilla system with a con-
nection to CPAN. If the module survives
the accompanying test suite without
error, it passes the smoke test and you
have a good chance that the module will
install on similar systems.

Branches on the
Snapshot Tree
For this to happen, developers need to
configure a CPAN shell on a virtual ma-
chine with retrospectively installed
Guest Additions, create a snapshot, and
call the snapshot “CPAN Smoke.” Figure
10 shows two branches on the snapshot
tree of the Ubuntu 10.04 virtual ma-
chine.

The originally created snapshot,
Browse, inherits from a fresh installation
and is independent of any snapshots you

might create on the basis of the second
branch, CPAN Smoke.

To make sure the installation also
works with the mini CPAN shell cpanm in
the local directory, the CPAN Smoke
snapshot also installs the CPAN local::lib
module. The best way of doing this on
an Ubuntu system is to issue the com-
mand

$ sudo apt‑get install liblocal‑lib‑perl

which relies on the package manager to
install local::lib on the virtual machine
in the main perl module tree only acces-
sible by root. The command

$ eval $(/usr/bin/perl ‑Mlocal::lib)

issued in the shell sets the shell variables
required to install additional CPAN mod-
ules in the user’s home directory, acces-
sible by the user’s regular ID. You can in-
stall the mini-shell locally via the “big”
CPAN shell:

$ cpan App::cpanminus

After doing so, the cpanm command for
installing other modules will be avail-
able in your $PATH:

$ cpanm ‑‑version

cpanm (App::cpanminus) version 1.4008

Now you create the snapshot and store it
as “CPAN Smoke.” If you then call
cpan‑smoke on the host and pass in a
CPAN tarball created with make tardist
as an argument, the script will restore

1/2 Ad
with bleed

Figure 10: A new CPAN Smoke snapshot,

derived from a vanilla Ubuntu install with

the Guest Additions, plus a configured and

ready-to-run CPAN shell.

Features
Perl: VirtualBox Snapshots

Layout: Listing 2, top of

column 1 looks a bit crowded.

-rls

most likely, the dependencies on other
CPAN modules need careful review.

Even in today’s age of the cloud,
where virtual machines such as Ama-
zon’s EC2 are available on the web for
those on a budget, a local virtualization
solution like VirtualBox is still an attrac-
tive option. A detailed instruction man-
ual for newcomers – compared with the
typically less structured offerings on the
Internet – is available [4], although it de-
scribes the more or less obsolete Virtual-
Box version 3.1. nnn

the snapshot, start the virtual machine,
and wait until its network configuration
is complete and responds to ping.

The ip() function (Listing 2, lines 82-
95) looks for the IP address of the virtual
machine you are using by sending a
guestproperty request to VirtualBox. A
regular expression grabs the relevant IP
address from the verbose output.

The VBoxHeadless ‑‑startvm command
of line 39 launches the virtual machine
without any GUI output and waits in the
foreground until the user kills the pro-
gram by pressing Ctrl+C. The script
uses the CPAN Proc::Simple module to
send the starvm command into the back-
ground, and remembers its PID so that
the END snippet triggered at the end of
the script sends its kill() command to
the right program in line 42, thus shut-
ting down the headless virtual machine.

Smoke Signals?
Line 70 copies the tarball into the virtual
machine’s /tmp directory, and line 74

launches the cpanm [tarball] command,
which picks up the tarball, unpacks it,
and issues make commands to test and
install. If cpanm discovers CPAN modules
that the module specifies as dependen-
cies, it downloads them automatically
from CPAN and proceeds to install them.

To make sure the shell in the virtual
machine finds the cpanm command,
searches for installed CPAN modules in
the local ~/perl5 path, and installs new
modules in this path, the ssh command
in line 72 issues the eval command
shown earlier to set the required shell
variables before running the cpanm com-
mand itself.

The output from the cpanm installation
script is directed to the standard output
of the calling cpan‑smoke script, thanks to
the Sysadm::Install module’s sysrun
function, pointing diligent developers to
first-hand information on how their lat-
est creation behaves in an pristine envi-
ronment. If you do see a smoke signal,
you can assume something is wrong;

[1] Listings for this article:
http:// www. linuxpromagazine. com/
 Resources/ ArticleCode

[2] VirtualBox Project Page:
http:// www. virtualbox. org

[3] Tor: http:// www. torproject. org/

[4] Romero, Alfonso V. VirtualBox 3.1:
Beginner’s Guide. Packt Publishing,
2010 (Kindle edition)

 iNFO

01 #!/usr/local/bin/perl ‑w

02 #############################

03 # cpan‑smoke ‑ VM for CPAN

04 # module smoke testing

05 # Mike Schilli, 2011

06 # (m@perlmeister.com)

07 #############################

08 use strict;

09 use Sysadm::Install qw(:all);

10 use Proc::Simple;

11 use Net::Ping;

12 use Log::Log4perl qw(:easy);

13

 14 my ($tarball) = @ARGV;

15

 16 die "usage: $0 tarball"

17 if !defined $tarball;

18

 19 Log::Log4perl‑>easy_init(

20 $ERROR);

21

 22 my $vbm = "VBoxManage";

23 my $vbh = "VBoxHeadless";

24 my $vm = "Ubuntu 10.04";

25 my $ippath = "/VirtualBox" .

26 "/GuestInfo/Net/0/V4/IP";

27 my $snap = "CPAN Smoke";

28

 29 # in case it's up in

30 # foreground mode

31 tap $vbm, "controlvm", $vm,

32 "poweroff";

33 tap $vbm, "snapshot",

34 $vm, "restore", $snap;

35

 36 my $proc =

37 Proc::Simple‑>new();

38 $proc‑>start(

39 "$vbh ‑‑startvm '$vm'");

40

 41 END {

42 $proc‑>kill();

43 }

44

 45 INFO

46 "Waiting for VM to come up";

47

 48 while (!$proc‑>poll()) {

49 DEBUG

50 "Waiting for VM process";

51 sleep 1;

52 }

53

 54 my $ip;

55

 56 while (!defined($ip = ip()))

57 {

58 DEBUG "Waiting for IP";

59 sleep 1;

60 }

61

 62 my $ping = Net::Ping‑>new();

63 while (!$ping‑>ping($ip)) {

64 DEBUG "Waiting for Ping";

65 sleep 1;

66 }

67

 68 INFO "VM is up: $ip";

69

 70 tap "scp", $tarball,

71 "$ip:/tmp/$tarball";

72 sysrun "ssh", $ip,

73 qq{ eval \$(/usr/bin/perl

 ‑Mlocal::lib);

74 cpanm /tmp/$tarball};

75

 76 tap $vbm, "controlvm", $vm,

77 "poweroff";

78 tap $vbm, "snapshot",

79 $vm, "restore", $snap;

80

 81 #############################

82 sub ip {

83 #############################

84 my ($stdout) = tap $vbm,

85 "guestproperty",

86 "get", $vm, $ippath;

87

 88 if (

89 $stdout =~ /Value: (.*)/)

90 {

91 return $1;

92 }

93

 94 return undef;

95 }

 liSTiNg 2: cpan-smoke

6

Features
Perl: VirtualBox Snapshots

November 2011 Issue 132 lINux-magazINe.com | lINuxpromagazINe.com

