
Features

linux-magazine.com | linuxpromagazine.com issue 128 JulY 2011 63

Perl: Banshee Database

J
ust like the choice between vi or
Emacs, many users swear by their
favorite music player and are reluc-
tant to change. After all, it isn’t

easy to transfer all those playlists and
ratings that you painstakingly have put
together over the years. Although I will
never use any editor except vi, I did re-
cently try out the Banshee music player
[1], because Rhythmbox, which I had
previously used, did not offer a simple
way to export ratings.

The GUI looks extremely clean and
well thought out (Figure 1), and when I
discovered that you can easily save, ex-
port, or externally manipulate the ratings
you enter in Banshee – because the
player stores them in an easily accessible
SQLite database – I fell head over heels.
Thus, operation “Player Change” was
launched. As you can see in Figure 2,
Banshee stores song metadata in the
CoreTracks table of the ~/.config/ban‑
shee‑1/banshee.db database file.

The path to the referenced audio files
on the filesystem sits in the Uri column
with a URI prefix of file://. As the
SQLite .schema command shows, the
table has many more interesting col-

umns, such as the number of rating stars
(Rating) or the number of bass drum hits
per minute that get disco dancers mov-
ing ecstatically on the dance floor – oth-
erwise known as BPM, or beats per min-
ute.

Saving Your Ratings
Listing 1 backs up all the song ratings
you have meticulously clicked and reads
out the database, compiling a map of
songs to rating values in a YAML-format-
ted file (Figure 3), which you can restore
later in case of a system crash or if you
change to another music player.

If you call the banshee‑rating‑backup
script without any parameters, it opens
the database with the DBI module and –
in the backup function starting in line 45
– uses a SELECT command to iterate over
all the entries in the CoreTracks table. If
the rating for a song is equal to 0, line 59
jumps to the next entry, because there is
no need to save non-existent ratings.

However, if the script finds a positive
value, line 63 saves it in the %ratings
hash under a key that’s the path of the
audio file. After completing all table en-
tries, the DumpFile() function, courtesy

of the YAML mod-
ule, writes the rat-
ings to the YAML
file banshee‑
 ratings.yml.

To restore the ratings at a later time,
you just need to call the banshee‑
rating‑backup with the ‑r option, which
calls the restore function starting in line
74. It uses YAML’s LoadFile() function in
line 79 to read the banshee‑ratings.yml
file and then iterates over the entries of
the hash initialized by this action.

The keys in the hash are the path
names to the rated audio files, and its
values are the ratings. Line 89 simply
needs to issue an SQL update command
to restore the database to its full glory,
one record at a time. The typical hop,
step, and jump with the DBI module in-
volves putting together the SQL query
with prepare(), followed by an execute()
with parameters, which replaces the
variables represented by question marks
in the query. Finally, a finish() releases
the allocated statement handle $sth.

Beats per Minute
Ratings alone are not enough to create a
playlist for specific events or moods –
would you really want to listen to AC/
DC at an intimate dinner? Banshee has a
“BPM”
field in
the

The Banshee music player stores song metadata in an SQLite database that a Perl script can

query and manipulate. We’ll whip up a quick backup and restore script and look into a new

algorithm calculating beats per minute. By Michael Schilli

Getting into the Banshee metadata

Hot Beats

Mike Schilli works as a
software engineer with
Yahoo! in Sunnyvale,
California. He can be
contacted at mschilli@perl
meister.com. Mike’s
homepage can be found at
http:// perlmeister. com.

 Mike Schilli

Figure 1: The Banshee music player.

Mike:

Should this
be $ratings
as in line
63?? -rls

Mike:

Only 2
slashes in-
stead of 3
correct??

-rls

JulY 2011 issue 128 linux-magazine.com | linuxpromagazine.com 64

Features
Perl: Banshee Database

metadata database to provide more ori-
entation.

The booming disco bass of a party
track like “Memories” by David Guetta
will clock about 120 BPM, and a fast
techno track about 180. However, a clas-
sical piece like “The Magic Flute” by
Mozart entirely does without drums and
thus scores low BPM values. Depending
on how you interpret the BPM defini-
tion, this might not be entirely correct

because even clas-
sical pieces define
a regular beat;
however, for my
simplified candle-
light dinner com-
patibility meter,
I’ll assume a BPM
value of 0 for
drumless pieces.
Radio DJs swear
by this value and,
in some cases, use

automated tools to put together a BPM-
compatible program.

With a combination of the rating and
the permitted BPM range, users can
choose the appropriate musical under-
pinnings for those special moments. Un-
fortunately, audio files don’t normally
include BPM values in their metadata.

Version 1.5 of the Banshee player in-
cludes a BPM detection tool based on
the GStreamer bpmdetect package.

Checking a box in Preferences | Source
Specific enables the BPM detector (Fig-
ure 4) and populates the database with
BPM values. The Tools | Rescan Music Li-
brary item starts the CPU-hungry update
– best to be run overnight.

Unfortunately, the results leave much
to be desired: The fairly laid back “I Feel
Fine” by The Beatles scores a heady 213

Figure 4: Banshee can calculate BPM values.

01 #!/usr/local/bin/perl ‑w

02 #############################

03 # banshee‑ratings‑backup

04 # Mike Schilli, 2011

05 # (m@perlmeister.com)

06 #############################

07 use strict;

08 use Log::Log4perl qw(:easy);

09 Log::Log4perl‑>easy_init(

10 $DEBUG);

11

 12 use DBI qw(:sql_types);

13 use DBD::SQLite;

14 use Data::Dumper;

15 use YAML

16 qw(LoadFile DumpFile);

17 use Getopt::Std;

18

 19 getopts("r", \my %opts);

20

 21 my $db = glob "~/.config" .

22 "/banshee‑1/banshee.db";

23 my $dbh = DBI‑>connect(

24 "dbi:SQLite:$db",

25 "", "",

26 {

27 RaiseError => 1,

28 AutoCommit => 1

29 }

30);

31

 32 my $yml =

33 "banshee‑ratings.yml";

34 my %ratings = ();

35

 36 if ($opts{r}) {

37 restore($yml, $dbh);

38 } else {

39 backup($dbh, $yml);

40 }

41

 42 $dbh‑>disconnect();

43

 44 #############################

45 sub backup {

46 #############################

47 my ($dbh, $yml) = @_;

48

 49 my %ratings = ();

50

 51 my $sth = $dbh‑>prepare(

52 "SELECT * FROM CoreTracks"

53);

54 $sth‑>execute();

55

 56 while (my $hash_ref =

57 $sth‑>fetchrow_hashref())

58 {

59 next

60 if $hash_ref‑>{Rating} ==

61 0;

62

 63 $ratings{ $hash_ref

64 ‑>{Uri} } =

65 $hash_ref‑>{Rating};

66 }

67

 68 DumpFile($yml, \%ratings);

69

 70 $sth‑>finish();

71 }

72

 73 #############################

74 sub restore {

75 #############################

76 my ($yml, $dbh) = @_;

77

 78 my $ratings =

79 LoadFile($yml);

80

 81 for

82 my $song (keys %$ratings)

83 {

84 DEBUG "Restoring $song";

85

 86 my $rating =

87 $ratings‑>{$song};

88

 89 my $sth = $dbh‑>prepare(

90 "UPDATE CoreTracks " .

91 "SET Rating = ? " .

92 "WHERE Uri = ?");

93 $sth‑>execute($rating,

94 $song);

95 $sth‑>finish();

96 }

97 }

 liSting 1: banshee-rating-backup

Figure 3: Excerpt of YAML file with Banshee user ratings.

Figure 2: The open database design makes Banshee an open book.

Features
Perl: Banshee Database

linux-magazine.com | linuxpromagazine.com issue 128 JulY 2011 65

BPM points – three times more than the
superfast pop/ punk track “Rich Lips” by
Blink-182, which only scores 68 BPM
(Figure 5).

In Listing 2, I am thus trying to find a
more reliable BPM counter solution. To
do so, the program uses the sox utility
from the sox package in Ubuntu to con-
vert the compressed audio files into raw
audio data, runs them through a narrow
bandpass filter in the bass range, and
then measures what will hopefully be
the bass peaks. Although this method
isn’t foolproof, it can at least distinguish
hoof-stamping disco tracks from classi-
cal music.

The Audacity tool, which is available
as an audio tool package for many distri-
butions, shows what the audio data for
two different musical genres looks like
(Figure 6). Although the classical orches-
tral piece with a heroic tenor shows only
slight deflection, you can easily see the
periodic tendencies in the broadband
synthesizer sound.

Sampled Music
Music, which people’s ears perceive as a
bundle of sound frequencies played at
the same time and in harmonic pitches,
are created from digital sampling values
by the sound card. A stereo recording
typically comprises 44,100 different 16-
bit samples per second, with values that
range between -32,768 and +32,767. A
pure tone would look very much like a
sine wave, but a musical instrument or a
human voice typically generates a wide
spectrum of frequencies.

An MP3 file applies a sophisticated en-
coding method to the sampled values,
and the script first needs to convert them
to raw format before analysis can be per-

formed. For this to happen, I need the
sox utility:

sox infile.mp3 ‑r 44100 ‑c 2 \

‑b 16 ‑t raw ‑e signed outfile.raw

This code creates the outfile.raw file in
raw format as a two-channel encoding
with signed 16-bit values at a sampling
rate of 44,100Hz from infile.mp3. To an-
alyze the bass activity and restrict the
data processed to 30 seconds, the BPM
counter adds the following arguments to
the previous command line:

... bandpass 100 1 trim 60 30

The bandpass filter removes frequencies
outside the range of a bass drum by ap-

plying a 3dB damper per octave. The
trim filter fast forwards 60 seconds into
the track and extracts the data for the
next 30 seconds when it gets there, so
the script doesn’t have to run through
the entire song to find meaningful data.

Disco hoofing, and
heroic tenor
Figure 7 shows the filtered audio files for
various titles. The bass drum in “I Feel
Fine” (upper right) and the booming
synthetic drum in David Guetta’s “Mem-
ories” (lower right) create clean peaks,
which the script identifies and converts
to beats per minute by some simple
stretching. In the case of classical music,
or acoustic guitar songs like “I Got a
Name” by Jim Croce, the signal sits at a
very low, more or less constant value,
and the algorithm returns a value of 0.

The bass signal values of fast punk
songs like “Rich Lips” by Blink-182 vary
dramatically and don’t necessarily occur
in regular intervals, but approximate ac-
quisition of the peaks will typically give
you meaningful BPM values.

After opening a connection to the da-
tabase file, Listing 2 calls the bpm_
update() function in line 43. The select
query in line 48 returns the paths of all
the tracks managed by Banshee as URIs
of the format file:// path/ file. Because
these URIs encode blanks as %20, the
uri_escape() function from the CPAN
URI::Escape module converts them back
to normal blanks. Line 62 removes the
leading file://, and, hey presto, you

Figure 7: The bass lines of songs after applying a narrow bandpass filter.

Figure 6: “Zu Hilfe, zu Hilfe, sonst bi-i-in ich

verloren” (Help, help, otherwise I am lost)

trills Prince Tamino in Mozart’s “The Magic

Flute” (top) compared with the full

synthesizer sound of “Memories” by David

Guetta (bottom).

Figure 5: Banshee’s BPMs are left wanting.

Mike:

Figure 7
says "No
Getting
Over."
OK as

set?? -rls

Mike:

uri_unes-
cape as in
line 61??

-rls

JulY 2011 issue 128 linux-magazine.com | linuxpromagazine.com 66

Features
Perl: Banshee Database

have the Unix path to the audio file in
$file.

The second SQL command, which line
52 prepares with matching placeholders,
updates the value in the BPM column of
the database, by using the URI as a se-
lection criterion for WHERE. Line 64 uses
execute() to send the update with the in-
serted URI and BPM parameters to the
database.

While the while loop iterates across all
the audio files, the SQL statement is
stored in $upd_sth, and line 64 just needs
to call it with new parameters each time.
At the end of the while loop, finish() re-

leases the internally created data struc-
tures.

Reducing the Mass of
Data
The bpm() function in line 72 handles the
task of computing the BPM value for an
audio file. If a .raw file has been passed
in to it, line 79 picks up the file. How-
ever, in most cases, it will probably be a
.wav, .mp3, .ogg, or something similar.
The sox command in line 87, which is
called using the CPAN module
Sysadm::Install’s tap() function, extracts
30 seconds of music after the one-min-

ute marker, runs it through the narrow
bandpass, and stores the resulting raw
data in a .raw file of the same name.

To keep the mass of data somewhat
tolerable, it reduces the sampling rate to
the value set for $SAMPLE_RATE in line 16 –
that is, to 10,000 per second.

The samples() function in line 111 then
uses sysread() to parse the values stored
in the .raw file in four-byte steps (two
channels with two bytes each) and uses
Perl’s internal unpack() function with the
'ss' placeholder in line 124 to extract
the two signed integers. It ignores the
value for the second channel in $c2 (be-

001 #!/usr/local/bin/perl ‑w

002 #############################

003 # banshee‑bpm‑update

004 # Mike Schilli, 2011

005 # (m@perlmeister.com)

006 #############################

007 use strict;

008 use Log::Log4perl qw(:easy);

009 use DBI qw(:sql_types);

010 use DBD::SQLite;

011 use Sysadm::Install qw(tap);

012 use URI::Escape;

013 use File::Temp qw(tempfile);

014 use POSIX;

015

 016 my $SAMPLE_RATE = 10_000;

017 my $OFFSET = 60;

018 my $SAMPLE_SECS = 30;

019 my $MIN_SIZE = 500;

020 my $MIN_DROP = 0.7;

021 my $NWINDOWS = 20;

022

 023 Log::Log4perl‑>easy_init(

024 {

025 level => $INFO,

026 category => "main"

027 }

028);

029 my $db = glob "~/.config" .

030 "/banshee‑1/banshee.db";

031 my $dbh = DBI‑>connect(

032 "dbi:SQLite:$db",

033 "", "",

034 {

035 RaiseError => 1,

036 AutoCommit => 1

037 }

038);

039 bpm_update($dbh);

040 $dbh‑>disconnect();

041

 042 #############################

043 sub bpm_update {

044 #############################

045 my ($dbh) = @_;

046

 047 my $sth = $dbh‑>prepare(

048 "SELECT Uri FROM CoreTracks "

049 . "WHERE BPM = 0");

050 $sth‑>execute();

051

 052 my $upd_sth = $dbh‑>prepare(

053 "UPDATE CoreTracks " .

054 "SET BPM=? " .

055 "WHERE Uri = ?");

056

 057 while ((my $uri) =

058 $sth‑>fetchrow_array())

059 {

060 my $file =

061 uri_unescape($uri);

062 $file =~ s#^file://##;

063 INFO "Updating $uri";

064 $upd_sth‑>execute(

065 bpm($file), $uri);

066 }

067 $upd_sth‑>finish();

068 $sth‑>finish();

069 }

070

 071 #############################

072 sub bpm {

073 #############################

074 my ($file) = @_;

075

 076 my $rawfile;

077

 078 if ($file =~ /\.raw$/) {

079 $rawfile = $file;

080 } else {

081 $rawfile = File::Temp‑>new(

082 SUFFIX => ".raw",

083 UNLINK => 1

084);

085

 086 my ($stdout, $stderr, $rc)

087 = tap "sox", $file, "‑r",

088 $SAMPLE_RATE,

089 "‑c", 2, "‑b", 16, "‑t",

090 "raw",

091 "‑e", "signed", $rawfile,

092 "bandpass", 100, 1,

093 "trim", $OFFSET,

094 $SAMPLE_SECS;

095

 096 if ($rc) {

097 LOGWARN

098 "sox $file: $stderr";

099 return ‑1;

100 }

101 }

102

 103 return raw_bpm(

104 samples(

105 $rawfile‑>filename

106)

107);

108 }

109

 110 #############################

111 sub samples {

112 #############################

113 my ($file) = @_;

114

 115 my @vals = ();

116 sysopen FILE, "$file",

117 O_RDONLY

 liSting 2: banshee-bpm-update

Features
Perl: Banshee Database

linux-magazine.com | linuxpromagazine.com issue 128 JulY 2011 67

cause it is identical). It only sends the
value for the first channel from $c1 to
the end of the results array @vals if it is
above the threshold value of $MIN_SIZE.
This value, which is set to 500 in line 19,
is designed to prevent the maximum
search from getting lost in minimal sig-
nals contained in quiet passages.

climbing Mountains
The script has no way of knowing in ad-
vance how many peak values it will find
in the data array, and it has no idea of
their size. Thus, it uses the “mountain
climber method” (Figure 8), which
means it investigates all the signal am-
plitudes in a short time window (e.g.,
1/20th of a second) and stores the maxi-
mum value found within. If the local
maximum in the next time window is
larger than the stored value, the signal
plot is ascending and the algorithm sets
a flag. If the maximum value in the fol-
lowing time window in this mode is then
smaller, the global maximum signal has
just been passed and the script incre-
ments the counter.

This method works because the maxi-
mum number of maximum values to find
is limited in the upward direction. BPM
values greater than 600 don’t make any
sense and can be ignored. Thus, we will
not discover two maximum values within
two time windows of 1/20th second.

The raw_bpm() function picks up the
data array for a channel and sets off to
find the peak. Line 137 defines the time
window width by dividing the number
of data points by the required time win-
dow frequency ($NWINDOWS, set to 20 win-
dows per second in line 21) times the
number of sample seconds. The $slope
variable marks the flag, which the algo-
rithm uses to determine whether it is
currently in an upward ("up") or down-
ward ("down") trend. raw_bpm() stores the
last global maximum in $pmax, and the
local maximum of the window currently
under investigation is in $max. To avoid
minor signal fluctuation causing the
method to trip over its own toes, $MIN_
DROP uses a value of 0.7 to stipulate that

the signal must fall by at least 30% to
determine the previous peak as a maxi-
mum and increment the $bumps counter.

Line 177 divides the number of maxi-
mum values found by the length of the
data area under investigation in seconds
and multiplies the results by 60.0 to
achieve a BPM value for one minute.

installation
The Perl modules you additionally need
to install for this project (DBI,
DBD::SQLite, Sysadm::Install,
URI::Escape, and Log::Log4perl) are
available either as packages in your
choice of distribution (e.g., libdbi-perl,
libdbd-sqlite-perl, etc. for Ubuntu) or
can be transferred to your local system
using a CPAN shell.

The sox package is not universally
available with MP3 support. If your local
legislation prohibits the use of this for-
mat, you can easily work with WAV or
OGG files instead.

If you have a large collection of music,
you will probably want to convert Ban-
shee to MySQL in the tools dialog for
reasons of performance. Because DBI is
database independent, you only need to
modify the connect() line in the script
(line 31). Instead of "dbi:SQLite:$db",
you should stipulate "dbi:mysql:dbname"
and insert your username and password
where the SQLite version has two blank
strings. Another idea for automatic clas-
sification of audio files would be distin-
guishing between audio books, spoken
word, and music. Or, you might want to
analyze the harmonies to be able to lis-
ten to happy-sounding music on some
days and leave minor chords or dishar-
mony for others. nnn

[1] Banshee: http:// banshee. fm

[2] Listings for this article:
http:// www. linuxmagazine. com/
 Resources/ ArticleCode

 info

Figure 8: Mountain climber method.

118 or LOGDIE "$file: $!";

119

 120 while (

121 sysread(FILE, my $val, 4))

122 {

123 my ($c1, $c2) =

124 unpack 'ss', $val;

125 $c1 = 0 if $c1 < $MIN_SIZE;

126 push @vals, $c1;

127 }

128 close FILE;

129 return @vals;

130 }

131

 132 #############################

133 sub raw_bpm {

134 #############################

135 my (@samples) = @_;

136

 137 my $win =

138 scalar @samples /

139 (

140 $NWINDOWS * $SAMPLE_SECS);

141 my ($bumps, $pmax, $slope) =

142 (0, 0, "up");

143

 144 for (

145 my $o = 0 ;

146 $o <= $#samples ‑ $win ;

147 $o += $win

148)

149 {

150 my $max = 0;

151 for (

152 my $i = $o ;

153 $i <= $o + $win ;

154 $i++

155)

156 {

157 if ($samples[$i] > $max) {

158 $max = $samples[$i];

159 }

160 }

161

 162 if ($slope eq "up") {

163 if (

164 $max < $MIN_DROP * $pmax)

165 {

166 $slope = "down";

167 $bumps++;

168 }

169 } else {

170 $slope = "up"

171 if $max > $pmax;

172 }

173 $pmax = $max;

174 }

175

 176 return

177 int($bumps /

178 $SAMPLE_SECS *

179 60.0)

180 || 1;

181 }

listing text here

 liSting 2: banshee-bpm-update (continued)

