
P
eople who stubbornly refuse to
use Microsoft Exchange to han-
dle communications at work and
prefer to avoid GUI-laden calen-

dar applications are likely to receive in-
vitations to meetings by email in the
form of .ics files.

These machine-readable text files in
iCalendar format [2] describe the date
and time of the meeting, the subject for
discussion, and who else will be attend-
ing. They also define the cycle for meet-
ings that recur regularly at the same time
every day or on the same day every
week.

GUI-Laden or Perl-Light?
Calendar applications from Gnome and
KDE, Evolution, iCal on the Mac, Out-
look on Windows, or Google Calendar

on the web can all import .ics

files and display meetings in a colorful
overview (Figure 1). They also pop up
dialog boxes that alert users to imminent
meeting appointments and send them
scuttling down the corridor to the con-
ference room.

Programs such as Google Calendar
also let you export your calendar data to
.ics files. This possibility opens up the
door to do-it-yourself calendar programs,
such as the ical-daemon I will be looking
at in this article. This daemon parses a
series of .ics files, creates an alert table
with the imminent meetings, and exe-
cutes a script (ical‑notify) 15 minutes
before a meeting is due to start to wake
up the user in any way you see fit.

Email is possible, but it could just as
easily be a message on an IM or IRC net-
work – or something completely differ-
ent, such as playing a particular music
track.

Exporting your Calendar
To download calendar data from the
Google server, you need to click the Ex-
port button in your Google calendar
below Settings | Google Calendar Settings
| Calendars. Doing this gives you a ZIP
archive with a .ics file (see Figures 2
and 3).

If you take a close look at the .ics file
in Figure 4, you will see lines of tags, in
which DTSTART indicates the start of a
meeting and DESCRIPTION provides the
topic for discussion. This is a 1:1 meet-
ing with my manager that takes place on
Wednesday every other week, as defined
by this line:

Mike Schilli works as a software engineer
with Yahoo! in Sunnyvale, California. He
can be contacted at mschilli@perlmeis‑
ter.com. Mike’s homepage can be found
at http:// perlmeister. com.

 MIkE SChILLI

Features
Perl: iCalendar

Janary 2011 Issue 122 lInux-magazIne.com | lInuxpromagazIne.com 44

Build your own calendar alerting system

Meeting Time!
A Perl daemon reads iCalendar files with meeting dates and alerts the user before the meet-

ing is due to start. By Michael Schilli

RRULE:FREQ=WEEKLY;INTERVAL=2;BYDAY=WE

The calendar application uses this infor-
mation to generate the meeting events as
of a specific starting date (such as the
current point in time) until a future time;
it can also trigger actions such as notifi-
cations at these times.

Public holidays in the
Calendar
If Wednesday happens to be a public
holiday, the fortnightly meeting with the
boss will not take place, and I won’t
want to be alerted – if I can help it – to
avoid disturbing my well-deserved peace
of mind on this day of rest. Because pub-
lic holidays follow complex rules, the
Google server bundles them in another
.ics file. Instead of meetings, the file in-
cludes full-day events if a day happens
to be a public holiday.

Because I live and work in the United
States, the “US Holidays” are the ones I
need; if you happen to live in a different
country, you need to go to Other Calen-
dars | Add | Browse Interesting Calen-
dars, select the holidays for your region,
then press the Subscribe button to tell
the calendar to import the holidays into
your calendar.

After doing so, you
will see a button la-
beled ICAL under
Other Calendars | Set-
tings | XYZ Holidays
in the Calendar Ad-
dress field, which
takes you to the .ics
file (Figure 5). Then
you need to feed the
holiday calendar (the

.ical file in Figure 6) to your own calen-
dar application, or the script, which will
then take the holiday events into consid-
eration and hide any meetings planned
on these days.

Do-It-Yourself Calendar
When launched, the ical‑daemon script
parses all the .ics files in the ~/.ics‑
daemon/ics directory and then uses the
CPAN iCal::Parser module to create a
data structure from
them. The structure
calculates the calendar
events for today and
organizes them in
chronological order in
the @TODAYS_EVENTS
array.

Line 10 in Listing 1
adds the CPAN local::lib module, which I
have used frequently in the past, to sup-
port the installation of all additionally re-
quired CPAN modules below the user’s
home directory; this means that the user
doesn’t need to be root and doesn’t need
to disturb the way the package manager
organizes things.

Lines 37 and 39 set the location for the
logfile and the file in which to save the
current process ID, pid. Line 52 initial-
izes the Log4perl
framework, which ap-
pends messages sent
as DEBUG, INFO, or WARN
information to the log-
file. The App::Daemon
module and the dae‑
monize() function it
exports ensure that the
script understands the
ical‑ daemon start and
ical‑ daemon stop com-
mands, which start
and stop the daemon.

The script also uses
a convenient approach
to date calculations

courtesy of the CPAN DateTime module.
As an example of this, the module resets
the time in the $dt DateTime object to
the start of a day simply by calling
$dt‑>truncate(to => 'day'). Date-
Time also overloads comparative opera-
tors such as < and >, so that $dt1 > $dt2
is precisely true if the time $dt1 is later
than the time $dt2.

Lines 20-22 define the 15-minute
warning period before a meeting as a
DateTime::Duration object and stores it
in the $ALERT_BEFORE variable. Line 99
then subtracts this period from the meet-
ing time and checks to see whether the
current time has already advanced be-
yond this point.

Cinderella Effect
In the while loop beginning in line 70,
the daemon regularly checks to see
whether or not a meeting is due to begin
in the next 15 minutes and, if so, calls
the ical‑notify script (Listing 2), which
I will look at later. After this, it deletes
the event from the array with the events
of the day.

At midnight, the current date changes,
and line 80 compares this with the day
stored in $CURRENT_DAY. If it has changed,
line 88 calls the update() function de-
fined further down to parse all the .ics
files and construct a new daily event
array.

If line 99 notices that a meeting is
closer than the grace period of 15 min-
utes, the tap() function exported by the
CPAN Sysadm::Install module calls the
ical‑notify script in line 104. The Find-
Bin module included in line 17 is one of
the Perl distribution’s standard func-
tions; if needed, it can export a $Bin

Figure 1: Google Calendar lists daily meetings, a weekly 1:1 meet-

ing, and a public holiday on Monday.

Figure 2: The Export function picks up the

Google Calendar .ics file from the server.

Figure 4: The .ics file exported from Google Calendar describes

a meeting that takes place every other week.

Figure 3: The

.ics file is

exported as a

.zip archive.

Mike:
.ics meant??

-rls

Features
Perl: iCalendar

lInux-magazIne.com | lInuxpromagazIne.com Issue 122 January 2011 45

variable that specifies the directory in
which the currently active script resides.
The tap() in line 104 now references
$Bin to find ical‑notify in the same di-
rectory as the active daemon.

If the current day is a public holiday,
the update() function notices this fact by
calling event_is_holiday() (defined in
lines 200-213); then, update() deletes all

the appointments for the day and passes
an empty array to the main program. To
discover whether an event originated
with the holiday calendar, event_is_hol‑
iday() checks to see whether the AT‑
TENDEE field in the CN entry contains the
“US Holidays” string; the matching lines
in the .ics file with the holidays look
like this:

ATTENDEE;...;CN=US Holidays;...

For another country’s holiday calendar,
this would be “CN=XYZ Holidays”, where
XYZ is the name of the country.

Forget Tomorrow!
The call to the CPAN iCal::Parser module
constructor in line 129 expects two Date-

001 #!/usr/local/bin/perl ‑w

002 #############################

003 # ical‑daemon ‑ Parse .ics

004 # files and send alerts on

005 # upcoming events.

006 # Mike Schilli, 2010

007 # (m@perlmeister.com)

008 #############################

009 use strict;

010 use local::lib;

011 use iCal::Parser;

012 use Log::Log4perl qw(:easy);

013 use App::Daemon

014 qw(daemonize);

015 use Sysadm::Install

016 qw(mkd slurp tap);

017 use FindBin qw($Bin);

018

 019 our $UPDATE_REQUESTED = 0;

020 our $ALERT_BEFORE =

021 DateTime::Duration‑>new(

022 minutes => 15);

023 our $CURRENT_DAY =

024 DateTime‑>today();

025 our @TODAYS_EVENTS = ();

026

 027 my ($home) = glob "~";

028 my $admdir =

029 "$home/.ical‑daemon";

030 my $icsdir = "$admdir/ics";

031

 032 mkd $admdir

033 unless ‑d $admdir;

034 mkd $icsdir

035 unless ‑d $icsdir;

036

 037 $App::Daemon::logfile =

038 "$admdir/log";

039 $App::Daemon::pidfile =

040 "$admdir/pid";

041

 042 if (exists $ARGV[0]

043 and $ARGV[0] eq '‑q')

044 {

045 my $pid =

046 App::Daemon::pid_file_read(

047);

048 kill 10, $pid; # Send USR1

049 exit 0;

050 }

051

 052 Log::Log4perl‑>easy_init(

053 {

054 level => $DEBUG,

055 file =>

056 $App::Daemon::logfile

057 }

058);

059

 060 $SIG{USR1} = sub {

061 DEBUG "Received USR1";

062 $UPDATE_REQUESTED = 1;

063 };

064

 065 $UPDATE_REQUESTED =

066 1; # bootstrap

067

 068 daemonize();

069

 070 while (1) {

071 my $now =

072 DateTime‑>now(

073 time_zone => 'local');

074

 075 my $today =

076 $now‑>clone‑>truncate(

077 to => 'day');

078

 079 if ($UPDATE_REQUESTED

080 or $CURRENT_DAY ne $today)

081 {

082

 083 $UPDATE_REQUESTED = 0;

084 $CURRENT_DAY = $today;

085

 086 DEBUG "Updating ...";

087 @TODAYS_EVENTS =

088 update($now);

089 DEBUG "Update done.";

090 }

091

 092 if (scalar @TODAYS_EVENTS) {

093 my $entry =

094 $TODAYS_EVENTS[0];

095

 096 DEBUG

097 "Next event at: $entry‑>[0]";

098

 099 if ($now > $entry‑>[0] ‑

100 $ALERT_BEFORE)

101 {

102 INFO "Notification: ",

103 "$entry‑>[1] $entry‑>[0]";

104 tap "$Bin/ical‑notify",

105 $entry‑>[1],

106 $entry‑>[0];

107 shift @TODAYS_EVENTS;

108 next;

109 }

110 }

111

 112 DEBUG "Sleeping";

113 sleep 60;

114 }

115

 116 #############################

117 sub update {

118 #############################

119 my ($now) = @_;

120

 121 my $start =

122 $now‑>clone‑>truncate(

123 to => 'day');

124 my $tomorrow =

125 $now‑>clone‑>add(

126 days => 1);

127

 128 my $parser =

129 iCal::Parser‑>new(

 LISTInG 1: ical-daemon (part1)

Mike: Not
{CN} eq "XYZ Holidays"

?? -rls

Features
Perl: iCalendar

Janary 2011 Issue 122 lInux-magazIne.com | lInuxpromagazIne.com 46

Time objects that define the time win-
dow for the current day as the period
from midnight to midnight. This helps
iCal::Parser generate the current day’s
events from recurring meetings and thus
removes the need to extrapolate these
events until the end of time. Once the
clock strikes 12 midnight, the daemon
refreshes its data anyway for the period
of one day only.

The parse() method in line 141 de-
vours any .ics files it finds, including
the collection of holidays, and adds the
newly discovered meeting data to the ex-
isting iCal::Parser object. The last call re-
turns a reference to a hash, which lists
events for, say, 10/ 11/ 2010 (mm/dd/
yyyy) in a hash entry that looks like this:

$hash‑>{2010}‑>{10}‑>{11}.

If line 162 reveals that one event is a hol-
iday, line 167 outputs a warning, and
update() passes an empty event array
back to the main program; a public holi-

day has priority over any other
entries. If it’s a business day in-
stead, update() extracts the val-
ues for DTSTART and DESCRIPTION
from the iCal data and appends
the starting time for the meeting
(in the form of a DateTime ob-
ject) and the topic of the meeting
to the @events array. Line 192
sorts the meetings in ascending
order by start time, and line 196
passes the plan for the day to the
main program in the form of an
array.

Taking Minutes
To allow users to check what the
daemon is doing, it calls on Log-
4perl to log all of its activities in
the ~/.ical‑daemon/log file (Fig-
ure 7).

If you feel like optimizing the algo-
rithm, the daemon could go to sleep
until 15 minutes before the next meeting
(or until the start of the next day), in-

stead of just sleeping for one minute.
However, log messages once a minute
won’t cost too much, and they do give
you more precise details of when the

130 start => $start,

131 end => $tomorrow

132);

133

 134 my $hash;

135

 136 for

137 my $file (<$icsdir/*.ics>)

138 {

139 DEBUG "Parsing $file";

140 $hash =

141 $parser‑>parse($file);

142 }

143

 144 my $year = $now‑>year;

145 my $month = $now‑>month;

146 my $day = $now‑>day;

147

 148 if (!exists $hash‑>{events}

149 ‑>{$year}‑>{$month}

150 ‑>{$day})

151 {

152 return ();

153 }

154

 155 my $events =

156 $hash‑>{events}‑>{$year}

157 ‑>{$month}‑>{$day};

158

 159 for my $key (keys %$events)

160 {

161 if (

162 event_is_holiday(

163 $events‑>{$key}

164)

165)

166 {

167 WARN

168 "No alerts today (holiday)";

169 return ();

170 }

171 }

172

 173 my @events = ();

174

 175 for my $key (keys %$events)

176 {

177 next

178 if $now > $events‑>{$key}

179 ‑>{DTSTART};

180

 181 # already over?

182

 183 push @events,

184 [

185 $events‑>{$key}

186 ‑>{DTSTART},

187 $events‑>{$key}

188 ‑>{DESCRIPTION},

189];

190 }

191

 192 @events = sort {

193 $a‑>[0] <=> $b‑>[0]

194 } @events;

195

 196 return @events;

197 }

198

 199 #############################

200 sub event_is_holiday {

201 #############################

202 my ($event) = @_;

203

 204 return undef unless

205 exists $event‑>{ATTENDEE};

206

 207 if ($event‑>{ATTENDEE}‑>[0]

208 ‑>{CN} eq "US Holidays")

209 {

210 return 1;

211 }

212 return 0;

213 }

 LISTInG 1: settingfile.ini (part2)

Figure 5: The .ics file with the holiday events can be

retrieved by clicking on the Google server’s ICAL but-

ton.

Features
Perl: iCalendar

lInux-magazIne.com | lInuxpromagazIne.com Issue 122 January 2011 47

daemon was active, when it was
stopped, or – heaven forbid – when it
crashed.

Poking the Daemon
To remove the need for the daemon to
check the timestamps of the .ics files
continually to see if new files have ar-
rived – or old files have disappeared –
the user can wake up the daemon manu-
ally by sending it a Unix signal. When
the daemon receives the USR1 signal, the
signal handler in lines 60-63 sets the
global $UPDATE_REQUESTED variable.

The next time the infinite while loop
in lines 70-114 executes, the daemon no-
tices the changed value and refreshes its
internal data structures with the current

.ics files. To remove the need
for the user to know the PID of
the daemon process in order to
issue a kill ‑USR1 pid com-
mand from the command line, a
call to the daemon with

ical‑daemon ‑q handles this. After send-
ing the signal, the script immediately
quits because of the exit command in
line 49 without starting another daemon.

Because the daemon is implemented
using the CPAN App::Daemon module, it
stores its PID in a file, which is easy to
locate by calling App::Daemon::pid_file_
read() in line 46.

Email Wake-Up Call
Google offers all kinds of notification
services, from pop-ups to text messages,
but ical‑daemon can run any script you
want. My original idea was to use in-
stant messages via Yahoo’s new Messen-
ger Web API [3], but there simply wasn’t
enough space here to cover this.

Maybe I’ll come back to the subject in
a future issue, once I’ve fought my way
through the OAuth jungle.

Instead, the ical‑notify script uses
the CPAN Mail::DWIM module, which
sends a message via the local SMTP dae-
mon on port 25. Attentive readers might
recall the dynamic tunnel mailer I built
[4], but a normal Sendmail or Postfix
process will do the trick as well. Figure 8
shows the mail that reaches the user 15
minutes before the meeting is due to
start.

For the installation, you need to down-
load the CPAN modules referred to here
and preferably use local::lib to install
them. If you need another country’s hol-
idays instead of the US holidays, you will
also need to replace the “US Holidays”
text string in line 154 of Listing 1 with
the name of your region’s holiday calen-
dar. And despite rumors to the contrary,
even if you’re working in Europe, this
won’t actually give you many more days
off work than I enjoy here in the US. nnn

[1] Listings for this article:
http:// www. linuxpromagazine. com/
 Resources/ Article‑Code

[2] iCalendar:
http:// en. wikipedia. org/ wiki/ ICalendar

[3] Yahoo! Messenger IM API:
http:// developer. yahoo. com/
 messenger/ guide/ ch02. html

[4] “Drilling SSH Tunnels” by Mike
Schilli, Linux Magazine, August 2010,
pp. 48-54

 InFo

Figure 6: All US public holidays in a .ics file.

01 #!/usr/local/bin/perl ‑w

02 #############################

03 # ical‑notify ‑ Email

04 # calendar notification

05 # Mike Schilli, 2010

06 # (m@perlmeister.com)

07 #############################

08 use strict;

09 use local::lib;

10 use Mail::DWIM qw(mail);

11

 12 my ($agenda, $time) = @ARGV;

13

 14 die "usage: $0 time agenda"

15 unless defined $time;

16

 17 mail(

18 to => 'm@perlmeister.com',

19 subject =>

20 "Meeting: $agenda",

21 text =>

22 "Meeting '$agenda' at " .

23 "$time.",

24 transport => "smtp",

25 smtp_server => "localhost",

26);

 LISTInG 2: ical-notify

Figure 7: The daemon writes to the logfile to take minutes of current events.

Figure 8: An email alerts the user to the fact that a meeting starts in 15 minutes.

Mike: line 208 of Listing 1??
-rls

Features
Perl: iCalendar

Janary 2011 Issue 122 lInux-magazIne.com | lInuxpromagazIne.com 48

