
Judith: Please change to:
@SW:Perl: Scripting

-rls

B
efore hotels, Internet cafes, or airports let new users access their WiFi net-
works, they reroute browser requests (Figure 1), and potential surfers first
have to wade through a splash page (Figure 2). When you get to that page,
all you see are endless terms of use, which nobody reads anyway, check-

boxes that you need to enable, ads, or all three.
WiFi providers set up

these splash pages as
obstacles that let them
centrally record the cli-
ent’s MAC address on
the WiFi network and
remind the user of his
obligations as an exemplary netizen. Once you have been through all these manda-
tory steps, the access point lowers its drawbridge and gives you both web access and
the ability to open arbitrary TCP connections to the Internet (Figure 3).

No Access Without Web
In some cases, users don’t even want web access; they just want to open an

SSH tunnel. Then, with the shell open and the browser closed, users
are surprised that they are assigned an IP address although the fire-

wall is obviously blocking access to the Internet.
The Perl script splash described here helps users out of this
dilemma by worming its way through the web forms that lie

between the raring-to-go user and full access to the Internet.
To do so, Splash clicks all the links, checks all the boxes,

accepts all the cookies, and well-behavedly sends them
all back to the WiFi provider, who then thinks that a

real, live human is using their browser for all of this
communication.

Flexible Plugin Tactics
But how can a simple script handle what could
be thousands of different splash page configura-
tions? WiFi providers might create complex
forms or even use their heavy artillery like
JavaScript or Flash animations to fend off auto-
matic scripts.

To counter this, the script relies on a plugin
strategy that allows the user, or a third party, to

modify it to handle new methods. Each plugin tries

Figure 1: The user requested google.com, but first the WiFi net-

work takes him to the provider’s splash page.

Features
Scripting

December 2010 Issue 121 lInux-magazIne.com | lInuxpromagazIne.com 62

Mike Schilli works as a software engineer with Yahoo! in
Sunnyvale, California. He can be contacted at mschilli@per‑
lmeister.com. Mike’s homepage can be found at http://
 perlmeister. com.

 Mike Schilli

 Bypass annoying WiFi splash pages

Quick Approval
A Perl script saves busy users the bother of clicking through WiFi provider splash pages,

automatically accepts the terms of use, and enables access as quickly as possible without a

browser. By Michael Schilli

Judith: I pulled the box with
the @D/@T lines up so the 'p'
descenders didn't encroach

on the @V/@A box. -rls

its own approach to outflanking the
splash page.

For example, the ClickAllLinks.pm
plugin clicks its way through all the links
on the page, whereas CheckBoxFill.pm
enables all the checkboxes displayed by
the first web form before pressing the
submit button. Users simply add newly
developed plugins to the plugin direc-
tory, then the script automatically picks
them up, without any need for configu-
ration, and tries them out as a new tac-
tic.

Whenever one plugin completes, the
Splash script checks to see whether a re-
quest for http:// www.google. com really
returns the page for the website or
whether another splash page is in the
way. If the access attempt is unsuccess-
ful, the script tries the next plugin; oth-

erwise, it outputs a success message and
quits.

Down with the Wall
Figure 4 shows how the script reacts if
the network connection is still down be-
cause the user hasn’t selected any of the
available WiFi networks or entered the
WPA password. While the Google re-
quest returns errors, or freezes for more
than five seconds, the script takes a
short break and then tries again. Once
the client has an IP address and web re-
quests at least show the splash page, the
script throws one plugin after another at

the artificial wall (Figure 5) until it fi-
nally comes tumbling down.

Listing 1 shows the SplashJumper base
class for all the plugins, which simply
defines a constructor. It pulls in the
CPAN Module::Pluggable module and
passes the require => 1 parameter set-
ting to it. The module then checks the
SplashJumper/Plugin subdirectory for
.pm files, issues a require instruction,
and loads them into the active script.

The Best First
Listing 2 shows a typical plugin with the
ClickAllLinks module. When the main

01 #############################

02 package SplashJumper;

03 #############################

04 # Mike Schilli, 2010

05 # (m@perlmeister.com)

06 use strict;

07 use warnings;

08 use Module::Pluggable

09 require => 1;

10

 11 sub new {

12 bless {}, shift;

13 }

14

 15 1;

 liSTiNg 1: SplashJumper.pm

01 #############################

02 package SplashJumper::Plugin::

ClickAllLinks;

03 #############################

04 # Mike Schilli, 2010

05 # (m@perlmeister.com)

06 #############################

07 use Log::Log4perl qw(:easy);

08

 09 #############################

10 sub register {

11 #############################

12 return "click‑all‑links",

13 10;

14 }

15

 16 #############################

17 sub process {

18 #############################

19 my ($self, $mech) = @_;

20

 21 for

22 my $link ($mech‑>links())

23 {

24

 25 INFO "Clicking on ",

26 $link‑>url();

27 my $resp =

28 $mech‑>get($link);

29

 30 INFO "Got ",

31 length($resp‑>content()),

32 " bytes back";

33

 34 $mech‑>back();

35 }

36 }

37

 38 1;

 liSTiNg 2: clickAlllinks.pm

Figure 2: The hotel WiFi rerouting the first browser request to a

splash page.

Figure 3: Users just need to click to access the terms of use, and can

then surf for 24 hours.

Features
Scripting

lInux-magazIne.com | lInuxpromagazIne.com Issue 121 December 2010 63

script loads the plugin, it calls the plug-
in’s register() method, which returns
the name of the current tactic and a pri-
ority number. The main script sorts the
plugins numerically on the basis of the
priority numbers they report, calling
plugins with a lower value first. This
means that plugins can decide among
themselves who goes first. It makes
sense to run the plugins with the best
chance of success first to reduce the run
time.

The two plugins I will look at here de-
fine priorities of 10 and 50, respectively,
so that the script will always try Click-
AllLinks first before applying the Check-
BoxFill tactic shown in Listing 3.

When a splash page counterattack
plugin runs, the script calls its process()
method and passes in the $mech browser
simulator, a WWW::Mechanize class ob-
ject. This CPAN module is perfect for
grabbing web pages, analyzing their
content, and drilling down on its links. It
is often used to implement screen scrap-
ers, because it provides more or less a
full set of browser capabilities (except
JavaScript code or Flash plugins), auto-

matically accepts
cookies, and re-
turns them to the
server.

In the Click-
AllLinks plugin,
the links() method identifies all the
links on the retrieved splash page in the
form of WWW::Mechanize::Link objects
and uses a for loop to iterate over the
list. The INFO function, imported from
the Log4perl treasure trove, tells the in-
quisitive user which link the plugin is
currently clicking. The browser simula-
tor’s get() method then executes the
web request.

Mechanize with
Autocheck
Explicit error checking is not performed
here because WWW::Mechanize runs in
autocheck mode by default; it throws an
exception for any errors it encounters,
and the eval{} block wrapped around
the call to the plugin in the main script
(Listing 4, line 55) fields them before the
main program goes on to handle the
error.

In line 30 (Listing 2), the plugin then
uses another INFO instruction to indicate
the number of bytes returned by clicking
the link, and the back() method in line
34 presses the virtual browser’s Back
button to return to the splash page.

The CheckBoxFill plugin in Listing 3
uses a different approach. It searches
through the HTML on the splash page to
find the first web form and then uses the
form_number(1) instruction to set it as
the current_form. The find_input()
method extracts all the "checkbox" type
input fields from the form, and the for
loop in lines 27-29 selects all of them by
calling their check() methods. Line 32
then calls submit_form() to send the web
form back to the server, before line 34
returns to the splash page to make sure
that the next plugin finds normal start-
ing conditions.

This method makes it possible to han-
dle splash pages like those shown in Fig-
ures 6 and 7, both of which require the
user to check a box and then click a but-
ton that submits the form.

Listing 4 finally shows the main pro-
gram, Splash. It starts by defining in line
13 the test URL, which the script re-
trieves to discover whether the Internet
connection is up. The Google page is
perfect for this, because it is lightweight
and highly likely to be available on a
working Internet. Line 16 initializes the
Log4perl framework at level DEBUG to
give the user detailed information on the
plugin that is currently running and the
actions that it is performing in the vir-
tual browser.

Thanks to using Module::Pluggable,
SplashJumper base class objects feature a
plugins() method that returns a list of
all the plugins installed in the Plugin
subdirectory. Line 28 checks whether
each plugin provides a register()

Figure 4: If the network connection is down, the script tries to reach

the Google server at intervals of 5 seconds.

01 #############################

02 package SplashJumper::Plugin::

CheckBoxFill;

03 #############################

04 # Mike Schilli, 2010

05 # (m@perlmeister.com)

06 #############################

07 use Log::Log4perl qw(:easy);

08

 09 #############################

10 sub register {

11 #############################

12 return "checkbox‑fill", 50;

13 }

14

 15 #############################

16 sub process {

17 #############################

18 my ($self, $mech) = @_;

19

 20 $mech‑>form_number(1);

21

 22 my @inputs =

23 $mech‑>current_form

24 ‑>find_input(undef,

25 "checkbox");

26

 27 for my $input (@inputs) {

28 $input‑>check();

29 }

30

 31 INFO "Submitting form 1";

32 $mech‑>submit_form(

33 form_number => 1);

34 $mech‑>back();

35 }

36

 37 1;

 liSTiNg 3: checkBoxFill.pm

Figure 5: If the script encounters a splash page, it first applies the

click-all-links method.

Features
Scripting

December 2010 Issue 121 lInux-magazIne.com | lInuxpromagazIne.com 64

method, as required, and omits any
plugins that are not correctly imple-
mented, returning an error message to
this effect at the same time.

Correctly implemented plugins return
their tactics as $algo in line 35 and their
preferred numeric priority in the $order
variable. The script bundles the data it
finds into an array and pushes a refer-
ence to it to the end of the @ways array.
Line 44 sorts the elements in this array
numerically by the order field so that a
plugin with a priority of 10 runs before a
plugin with a priority of 50.

The WWW::Mechanize browser simu-
lator sets its timeout to five seconds in
line 50; this means that the loop block in
lines 53-62 only freezes in the get()
method for five seconds before giving
up, sleeping for five seconds, and then
trying again to reach the Google server.
At the end of the block, which Perl re-
peats by issuing a redo, at least the local
WiFi network is working and the client
was assigned a valid IP address; how-
ever, the WiFi provider still might have
routed requests to www.google.com to an

internal server that produced the splash
page.

The for loop in lines 65-95 attempts to
outwit the splash page with a variety of
plugins, and once the URL for the latest
request is equal to the test URL (i.e., no

redirect to the splash page happened),
line 72 decides that the splash page has
been defeated and the Internet connec-
tion is open.

If this is not the case, line 85 calls the
process() method for the next plugin in

Figure 6: The free WiFi network at San Diego airport requires users to check a box and then

submit the web form.

Features
Scripting

lInux-magazIne.com | lInuxpromagazIne.com Issue 121 December 2010 65

line with equal or higher priority. The
eval{} block in lines 81-86 traps any er-
rors that occur in the plugin, and line 88
checks the $@ variable to see if anything
has happened.

installation
To makes sure the script finds the
Splash Jumper module, the latter must be

installed in the script’s %INC search path:
The easiest way to do this is to put both
in the same directory. Plugins are stored
in the newly created SplashJumper/
Plugin subdirectory so that the file lay-
out looks like this:

splash

SplashJumper.pm

SplashJumper/Plugin/ClickAllLinks.pm

SplashJumper/Plugin/CheckBoxFill.pm

Additional plugins could potentially han-
dle multiple web forms, or even work
their way around JavaScript tricks. They
also need to be stored in the Plugin di-
rectory. Their register() method needs
to assign a name for the tactic, and they
decide on a priority to define the order
in which they will run. After opening
your laptop’s lid at the airport, you then
just need to launch the splash script. Its
output tells you how the pocket warrior
is fairing in its new environment and
whether it successfully pushed aside
those artificial roadblocks. nnn

01 #!/usr/local/bin/perl ‑w

02 #############################

03 # splash ‑ Traverse WiFi

04 # Splash Pages

05 # Mike Schilli, 2010

06 # (m@perlmeister.com)

07 #############################

08 use strict;

09 use SplashJumper;

10 use WWW::Mechanize;

11 use Log::Log4perl qw(:easy);

12

 13 my $url =

14 "http://www.google.com";

15

 16 Log::Log4perl‑>easy_init(

17 $DEBUG);

18

 19 my $sj = SplashJumper‑>new();

20

 21 my @ways = ();

22

 23 for

24 my $plugin ($sj‑>plugins())

25 {

26

 27 if (

28 !$plugin‑>can("register"))

29 {

30 ERROR "$plugin can't do",

31 " register()";

32 next;

33 }

34

 35 my ($algo, $order) =

36 $plugin‑>register();

37

 38 push @ways,

39 [$algo, $plugin,

40 $order];

41 }

42

 43 # sort by plugin priority

44 @ways = sort {

45 $a‑>[2] <=> $b‑>[2]

46 } @ways;

47

 48 my $mech =

49 WWW::Mechanize‑>new();

50 $mech‑>timeout(5);

51

 52 # wait until network is up

53 {

54 INFO "Trying $url";

55 eval { $mech‑>get($url); };

56 if ($@) {

57 INFO

58 "Connection down, retrying";

59 sleep 5;

60 redo;

61 }

62 }

63

 64 # try to get past splash page

65 for my $ways (@ways) {

66

 67 my $current_url =

68 $mech‑>response‑>request

69 ‑>uri;

70

 71 if ($current_url eq $url) {

72 INFO "Link is up.";

73 last;

74 } else {

75 INFO "Link still down";

76 }

77

 78 my ($algo, $plugin, $order)

79 = @$ways;

80

 81 eval {

82 INFO "Processing splash ",

83 "page $current_url ",

84 "with algo $algo";

85 $plugin‑>process($mech);

86 };

87

 88 if ($@) {

89 ERROR

90 "Algo $algo failed ($@)";

91 } else {

92 INFO

93 "Plugin $algo succeeded";

94 }

95 }

 liSTiNg 4: Splash

[1] Listings for this article:
http:// www. linux‑magazine. com/
 Resources/ Article‑Code

 iNFo

Figure 7: The free WiFi at San Francisco airport also features a checkbox.

Features
Scripting

December 2010 Issue 121 lInux-magazIne.com | lInuxpromagazIne.com 66

