
T
he Pidgin instant messaging client
[1] not only runs on a variety of
operating systems, it supports a
large number of IM protocols.

Whether you prefer Yahoo or MSN,
Google Talk or IRC, the free Pidgin
plugin groups them under its umbrella,
facilitating communications
with online buddies who use
different services. Pidgin’s
plugin architecture helps the
omnipresent product keep on
top of newly released or
changing protocols and con-
tinually extends its scope.

You don’t even need to write plugins
in Pidgin’s native language, C, and pro-
vide them as shared libraries. Scripts
written in high-level languages like Perl
can be linked in at startup, and if they
cooperate with Pidgin’s GLib-based
event loop, they can even execute com-
plex operations like retrieving websites
while the Pidgin core and its graphical
interface keep running uninterrupted.

Although it might sound crazy to let a
C program play hopscotch with a Perl
script in the same event loop, if you re-
call that Perl is just an abstraction layer
on top of a C layer, and thus just as good
at triggering and receiving events, the
whole thing looks far more logical.

Ups and Downs
The Pidgin plugin that I will describe
here is unobtrusive for the most part,

but it regularly contacts a share ticker
service in the background. Because of
this, it can let you know whether one of
the shares stored in the configuration file
starts to climb like crazy or plummet. If
either of these happens, the plugin
opens a communication window to the

logged in user, as shown in Figure 1, and
displays the complete list of monitored
shares, including the day’s changes as a
percentage.

In the configuration file shown in Fig-
ure 2, the user can specify which ticker
icons to monitor, as well as the scale of
change that warrants an
alert. For lines that
contain the share
shortcut but no
percentage, the
plugin auto-
matically as-
sumes a toler-
ance of two
percent.

The actual
plugin code

contains just 82 lines (Listing 1) and is
fairly simple [2].

Extending Pidgin in Perl
To begin, Pidgin loads the code in Listing
1, assuming you’ve installed the Perl
script with a .pl suffix in its plugin di-

rectory and assuming the user has
activated the plugin in the corre-
sponding dialog box (see the “In-
stallation” section).

The plugin must define the call-
backs required by the Pidgin API,
plugin_init() and plugin_load().
Pidgin accesses plugin_init() to

retrieve information about the plugin
and be able to display it in the Tools |
Plugins menu.

When stock market players click to en-
able the plugin later, the plugin_load
function (lines 46-57) starts running. It
defines the plugin’s tasks by submitting

them to the event loop, which will
process them later. If the news

from the market is so bad
that the budding broker

disables the plugin, it will
handle any necessary
cleanup in the plugin_
unload() callback before

Pidgin releases it from
memory.

Outsourcing
Quote Watch
The WatchQuotes module

described later helps
track stock quotes.

It parses the
plugin’s

Mike Schilli works as a software
engineer with Yahoo! in Sunny
vale, California. He can be con
tacted at mschilli@perlmeis‑
ter.com. Mike’s homepage
can be found at
http:// perlmeister. com.

 MikE Schilli

"Pidgen supports a
large number of IM

protocols."

Features
Perl: Pidgin Stock Alerts

OctOber 2010 Issue 119 lInux-magazIne.cOm | lInuxprOmagazIne.cOm 52

A Pidgin plugin written in Perl alerts the user via instant message when specific shares

become volatile. By Michael Schilli

 Stock exchange alerts via instant message

Bulls and Bears

configuration file when line 54 of the
plugin calls its init() method. Line 55
then launches the permanent monitoring
process by calling the watch() method.
The plugin script passes a reference to
the quotes_update callback defined in
lines 60-82 to the method; the callback
later wraps any message passed to it into
an IM conversation and forwards the
whole thing to the pleasantly, or un-
pleasantly, surprised user.

For this to happen, the find() method
of the Purple::Accounts object in line 69
finds the user, who is (hopefully) logged
in; line 73 then initiates a conversation
to the user in the form of a Purple:: Con‑
versation object. If something goes
wrong, say, because the user defined in
$USER is not logged in to the specified
service, line 77 returns, and the message
never gets to see the light of a turbulent
day at the stock exchange.

If everything works
correctly, the write()
method called in line
79 sends the message
using the plugin
name as the sender.
The final parameter
uses the time() func-
tion to set the current
time, which Pidgin
displays for each
message.

cool kids’ Framework
The $USER and $PROTOCOL variables in
lines 21 and 22 define the username to
alert in case of trouble, and the IM ser-
vice in which to do this. Here, the ser-
vice is prpl‑yahoo, which is Yahoo’s
messenger protocol. The plugin script
pidgin‑stockwatch.pl pulls in the
WatchQuotes module in line 7. When

implementing this module, it’s important
to make sure that it processes events
asynchronously with Pidgin’s event
loop. This ensures that the GLib kernel
processes mouse clicks on Pidgins’s UI
by the user during long-winded opera-
tions, such as retrieving data from a
website. If the plugin just issued web re-
quests and waited for the data to trickle
in, the GUI would turn into a pillar of
salt until the result came back.

Several frameworks can be employed
to accomplish this. I
have used POE [3] in
several Perl columns
before, so this time, I’ll
give a newcomer a
chance. The one that is
the buzz with the cool
kids of the Perl scene
right now is the
AnyEvent Framework
[4]. It doesn’t bind di-
rectly to a specific
event loop but cooper-
ates with half a dozen implementations.

Jack of All Trades
The advantage with using AnyEvent is
that you can implement a module like
WatchQuotes.pm to be totally generic and
run it with all kinds of event loops and
on a variety of platforms. The only pre-
condition for this is that the main pro-
gram maintains a reference to the
AnyEvent object. If the last reference to
it vanishes, AnyEvent will clean up after

itself and no more events
will be processed. To
keep it running, I will
store a reference to the
WatchQuotes object in the
global $WATCH_QUOTES
variable, which then ref-
erences AnyEvent’s ob-
jects and keeps them
alive.

This approach is nec-
essary because Pidgin only calls the de-
fined plugin callbacks briefly at startup,
and their local variables disappear im-
mediately after the program flow returns
to the regular Pidgin biotope.

Bind loosely
Loose event loop binding with AnyEvent
offers another benefit: The WatchQuotes.
pm module can be tested independently,
of Pidgin, for example, by running the

script in Listing 2. The script instantiates
the WatchQuotes class and calls its init()
method, which tells WatchQuotes to
parse the ~/.pidgin‑stockwatch.yml
configuration file defined by the user
and convert it internally into a Perl data
structure (Figure 3).

As a functional example of an event
loop, AnyEvent defaults to a loop imple-
mented in Perl. Listing 2 uses condvar()
to define a conditional variable to which
the AnyEvent kernel can send messages.

The subsequent
method call to recv()
in line 14 then waits
for a message, which
never comes; in the
mean time, it lets the
AnyEvent kernel han-
dle events from mod-
ules like WatchQuotes.

The test script used
here retrieves share
prices at regular inter-
vals and calls the call-

back defined in lines 17-20 with a list of
formatted stock quotes, if the price of
one of the monitored shares defined in
the configuration file exceeds the defined
thresholds. The call to print() in line 19
then sends the message to stdout. The
script continues to run and keeps re-
freshing stock data from the Yahoo ticker
service until the user stops it by pressing
Ctrl+C. This gives programmers a con-
venient approach to identifying any er-
rors before the script is injected into the

Figure 1: The stock exchange monitor alert-

ing the user because the price of Google

shares has risen by more than two percent.

Figure 2: Users can add stock sym-

bols to the watch list in the YAML

file and define a threshold as a

percentage if needed.

Documentation on writing Pidgin plug
ins is hard to find and incomplete. Al
though Pidgin maintainer Sean Egan
wrote a book, Building and Extending
Gaim [5], the name of the project (now
Pidgin instead of Gaim) and more or less
every single function call and data struc
ture has changed since then. The book,
although well written, is only useful for
studying the underlying Pidgin architec
ture.

Worse, the online documentation [6] [7]
is not as up to date as one might like.
The automatically generated Doxygen
documentation lacks, as is often the
case, a touch of TLC; it is also incom
plete and thus fairly useless. The most
effective method of finding a parameter
for a function call is to investigate recent
reallife plugins [8] (Table 2).

 RTFM – iF YOU hAvE OnE

Figure 3: Perl creates a data struc-

ture from the YAML file.

Features
Perl: Pidgin Stock Alerts

lInux-magazIne.cOm | lInuxprOmagazIne.cOm Issue 119 OctOber 2010 53

inimical Pidgin environment, where de-
bugging is difficult – especially if Pidgin
fails to load the plugin correctly for some
reason (see the “RTFM – If You Have
One” box).

The WatchQuotes.pm module in Listing
3 starts in typical Perl style by defining a
new() constructor that creates an object
and locates the user’s home directory. It
accepts additional parameters such as
the name of the configuration file in
conf_file but falls back to default set-
tings if they’re not provided and stores
them in the object hash.

YAMl for humans and
Machines
The init() method defined in lines
33-52 calls the YAML module’s Load‑
File() function to parse the configura-
tion. This format has the advantage of
being just as easily readable for humans
as for machines (Figure 2).

The application supports both simple
array entries, such as ‑ amzn, and hash
data structures, such as ‑ goog: 2%,
which YAML stores as references to a

hash providing the mapping ("goog" =>
"2%"). Line 41 checks to see if Perl’s ref
function returns the HASH string, which
indicates a hash reference, to distinguish
it from simple entries.

If an empty string is returned, the
value is a simple scalar and line 49 in-

serts the default threshold value of two
percent. The module stores monitored
ticker symbols in the conf entry in the
object hash and assigns the configured
trigger percentage values to them.

The watch method in lines 55-67 cre-
ates a periodic timer. The after => 10
parameter tells the timer to call the call-
back defined in cb exactly 10 seconds
after starting. This delay is intentional

and necessary if the plugin starts before
the user is reachable on the instant mes-
saging network. Without this pause for
thought, early messages would disap-
pear into a black hole instead of going to
the stockholder. The interval parameter,
on the other hand, carries a value of 300

to tell the timer to call the callback every
five minutes after the first run to pick up
the latest share prices from the Yahoo
server and figure out if the current trades
exceed the configured trigger values.

Asynchronous Web
Fetch
The callback function reference passed
to the watch() method points to the

01 #!/usr/local/bin/perl ‑w

02 use strict;

03

 04 use Pidgin;

05 use local::lib;

06 use Glib;

07 use WatchQuotes;

08

 09 our %PLUGIN_INFO = (

10 perl_api_version => 2,

11 name => "Pidgin Stockwatch",

12 summary =>

13 "Stock Alert via IM",

14 version => "1.0",

15 author => "Mike Schilli " .

16 "<m\@perlmeister.com>",

17 load => "plugin_load",

18 unload => "plugin_unload",

19);

20

 21 our $USER = "yahoo‑username";

22 our $PROTOCOL = "prpl‑yahoo";

23

 24 our $WATCH_QUOTES =

25 WatchQuotes‑>new();

26

 27 #############################

28 sub plugin_init {

29 #############################

30 return %PLUGIN_INFO;

31 }

32

 33 #############################

34 sub plugin_unload {

35 #############################

36 my ($plugin) = @_;

37

 38 Purple::Debug::info(

39 "stockwatch",

40 "Plugin unloaded.\n");

41

 42 1;

43 }

44

 45 #############################

46 sub plugin_load {

47 #############################

48 my ($plugin) = @_;

49

 50 Purple::Debug::info(

51 "stockwatch",

52 "Plugin loaded.\n");

53

 54 $WATCH_QUOTES‑>init();

55 $WATCH_QUOTES‑>watch(

56 \"es_update);

57 }

58

 59 #############################

60 sub quotes_update {

61 #############################

62 my ($msg) = @_;

63

 64 Purple::Debug::info(

65 "stockwatch",

66 "Updating Quotes.\n");

67

 68 my $account =

69 Purple::Accounts::find(

70 $USER, $PROTOCOL);

71

 72 my $conv =

73 Purple::Conversation‑>new(

74 1, $account, $USER);

75

 76 # user not online?

77 return unless defined $conv;

78

 79 $conv‑>get_im_data‑>write(

80 $PLUGIN_INFO{name}, $msg,

81 0, time);

82 }

 liSTing 1: pidgin-stockwatch.pl

"The most effective method
of finding a parameter for a
function call is to investigate

recent real-life plugins."

Features
Perl: Pidgin Stock Alerts

OctOber 2010 Issue 119 lInux-magazIne.cOm | lInuxprOmagazIne.cOm 54

main script’s quotes_update() function.
The timer then passes it on to the
fetch() method (lines 70-91), which re-
trieves the ticker data from Yahoo’s web-
site.

Although this can take a couple of sec-
onds if the going is tough on the Inter-
net, the http_get() function called in
line 84 comes from the treasure trove of
the CPAN AnyEvent::HTTP module and
processes the request asynchronously.
The function expects the URL for the
share price service and a callback, to
which it jumps once the data has trick-
led in completely.

Note that Perl immediately carries on
with the program flow after calling http_
get(), without the requested HTTP data
being available at this point in time.

Free Ticker Data
As the documentation for the CPAN
Finance::YahooQuote [9] module re-
veals, Yahoo’s stock ticker service sup-
ports a whole bunch of parameters, from
which the WatchQuotes.pm picks only
those listed in Table 1: the ticker symbol
(s), the previous day’s price (p), the cur-
rent price (l1), and the percent change
(p2).

Bundled together as a string, Watch-
Quotes throws spl1p2 plus s=goog+yahoo
at the Yahoo service for my sample user,
who is interested in how the Google and
Yahoo shares are faring.

The data are returned in CSV
format, which is two lines of text
like the following:

"GOOG",467.49,475.83,"+1.78%"

"YHOO",14.89,14.94,"+0.34%"

The simple regular expression-
based parser in parse_csv()
(lines 94-119) creates a data
structure from them. The data
hash entry of the WatchQuotes ob-
ject then contains a pointer to an
array that contains the previous
day’s price, the latest price (typi-
cally with a delay of 20 minutes),
and the change as a percentage.

To Alert or
not To Alert
It remains to be seen whether the price
fluctuations warrant alerting the user;
this is handled by the check method in
lines 122-157. Again, the callback that
will potentially use IM to contact the
user is passed to the method.

The code in line 129 copies the latest
set of data from the {data} object entry
into the {refdata} section of the archive
to give the code a reference for compari-
son purposes later. Instead of just saving
the reference itself, the { %{ $self‑>
{data} } } line copies the data held by
the $self‑> {data} reference, creates a
hash from the results, and returns a ref-
erence to it.

If archived data are available before
this call, the for loop in lines 143-145
would modify the entries for the previ-
ous day’s price to match the current
price. I don’t want the code to send a
new message every five minutes for a
share price that has risen once, but I do
want to know if the price continues to
change and again exceeds the threshold.

The noteworthy() (lines 180-200)
method checks to see whether the share
price has exceeded the previous day’s
price (or simply the previous price if an
alert has already occurred today). In this
case, line 153 calls the message() method
in line 160 to format the data of all mon-
itored shares and creates a text string.
The same line then calls the passed-in

Pidgin plugin callback function, which
uses IM to alert the user.

installation
Popular Linux distributions will offer a
package for the Perl interface to Pidgin
(e.g., Ubuntu: pidgin and libpurple0,
both version 2.7.0). The pidgin‑stock‑
watch.pl plugin script (Listing 1) needs
to be made executable and stored in
~/.purple/plugins below the budding
broker’s home directory. Note that the
.pl suffix is required, or Pidgin won’t
pick it up. The WatchQuotes.pm module
(Listing 3) must be in a path where the
local Perl installation can find it. If nec-
essary, the script code will point to the
right location, as you can see from the
use local::lib instruction in line 5 of
Listing 1. What’s local::lib, you might
ask?

The AnyEvent and AnyEvent::HTTP
modules haven’t made their way into
some popular distributions – and you
might need to visit CPAN to retrieve
them. To avoid messing up the Linux
package manager’s clean Perl packages
with additional CPAN modules, users
who appreciate a tidy system will use
the local::lib CPAN module to install
them below ~/perl5 in their home direc-
tories. After entering:

perl Makefile.PL ‑‑bootstrap

make test && make install

01 #!/usr/bin/perl ‑w

02 use strict;

03 use lib local::lib;

04 use AnyEvent;

05 use WatchQuotes;

06

 07 my $watcher =

08 WatchQuotes‑>new();

09 $watcher‑>init();

10 $watcher‑>watch(\&callback);

11

 12 my $quit_program =

13 AnyEvent‑>condvar;

14 $quit_program‑>recv;

15

 16 #############################

17 sub callback {

18 #############################

19 print "$_[0]\n";

20 }

 liSTing 2: watch-quotes

Symbol Last closing price Price of latest trade Percent change

s p l1 p2

 TABlE 1: Ticker Parameters

Figure 4: A mouse click enables the newly installed

plugin, which Pidgin then lists in the Plugins menu.

Features
Perl: Pidgin Stock Alerts

lInux-magazIne.cOm | lInuxprOmagazIne.cOm Issue 119 OctOber 2010 55

in the downloaded local::lib distribution
from CPAN, you will probably want to
append the output of the command

perl ‑I$HOME/perl5/lib/perl5 ‑Mlocal::lib

to your local .bashrc file. After restarting
the shell (or sourcing the .bashrc file),
local::lib sets environmental variables
that tell the CPAN shell to install various

modules in ~/perl5 under the user’s
home directory and to point Perl scripts
you call to the additional search paths.
But, Pidgin remains unaware of this and
needs an explicit use local::lib instruc-
tion to put it on the right track.

hurdles for Developers
The plugin script in Listing 1 will not
run without Pidgin and throws irate

error messages at anybody bold enough
to try. The messages hint that it is un-
able to find some GLib functions in the
corresponding shared libraries.

According to Pidgin developers, this is
normal, although your opinion might
differ. To get it working as a standalone
script for testing, you can use a tempo-
rary workaround and just comment out
the use Pidgin and use Glib lines. At

001 #############################

002 package WatchQuotes;

003 # Mike Schilli, 20100

004 # (m@perlmeister.com)

005 #############################

006 use strict;

007 use warnings;

008 use AnyEvent;

009 use AnyEvent::HTTP;

010 use YAML qw(LoadFile);

011

 012 #############################

013 sub new {

014 #############################

015 my ($class, %options) = @_;

016

 017 my ($home) = glob "~";

018

 019 my $self = {

020 watcher => undef,

021 data => {},

022 refdata => {},

023 conf_file => ("$home/" .

024 "pidgin‑stockwatch.yml"),

025 conf => {},

026 %options,

027 };

028

 029 bless $self, $class;

030 }

031

 032 #############################

033 sub init {

034 #############################

035 my ($self) = @_;

036

 037 my $yml = LoadFile(

038 $self‑>{conf_file});

039

 040 for my $e (@$yml) {

041 if (ref $e eq "HASH") {

042 my ($key, $val) = %$e;

043 $val =~ s/%//g;

044 $self‑>{conf}‑>{$key} =

045 $val;

046 } else {

047

 048 # 2% by default

049 $self‑>{conf}‑>{$e} = 2;

050 }

051 }

052 }

053

 054 #############################

055 sub watch {

056 #############################

057 my ($self, $cb) = @_;

058

 059 $self‑>{watcher} =

060 AnyEvent‑>timer(

061 after => 10,

062 interval => 300,

063 cb => sub {

064 $self‑>fetch($cb);

065 },

066);

067 }

068

 069 #############################

070 sub fetch {

071 #############################

072 my ($self, $cb) = @_;

073

 074 my $url =

075 "http://"

076 . "download.finance.yahoo.

com/d/"

077 . "quotes.csvr?e=.csv"

078 . "&f=spl1p2&s="

079 . join('+',

080 sort

081 keys %{ $self‑>{conf} }

082);

083

 084 http_get(

085 $url,

086 sub {

087 $self‑>parse_csv($_[0]);

088 $self‑>check($cb);

089 }

090);

091 }

092

 093 #############################

094 sub parse_csv {

095 #############################

096 my ($self, $csv) = @_;

097

 098 for my $line (split /\n/,

099 $csv)

100 {

101

 102 my (

103 $symbol, $prev,

104 $last, $change

105)

106 =

107 map { s/[^\w\.‑]//g; $_ }

108 split /,/, $line;

109

 110 next

111 unless defined $symbol;

112

 113 $symbol = lc $symbol;

114

 115 $self‑>{data}‑>{$symbol} =

116 [$prev, $last,

117 $change];

118 }

119 }

120

 121 #############################

122 sub check {

123 #############################

124 my ($self, $cb) = @_;

125

 126 if (!scalar

127 keys %{ $self‑>{refdata} })

128 {

129 $self‑>{refdata} =

130 { %{ $self‑>{data} } };

131 }

 liSTing 3: WatchQuotes.pm (part1)

Features
Perl: Pidgin Stock Alerts

OctOber 2010 Issue 119 lInux-magazIne.cOm | lInuxprOmagazIne.cOm 56

least this way, you’ll be able to type the
line

perl ‑c pidgin‑stockwatch.pl

and check that the syntax is
okay and that the script finds
the WatchQuotes.pm module and
the CPAN modules it needs. If
you launch Pidgin in debug
mode by entering pidgin ‑d, it
will provide detailed output on what is
currently going on and you can even add
more messages from within the Perl
plugin by using:

Purple::Debug::info("stockwatch", U

 "Plugin loaded.\n");

At least that way you can see what the
plugin is doing and confirm that Pidgin
finds it. If this works, and if Pidgin at

least runs the plugin_init() routine in
lines 28-43 of Listing 1, the plugin will
appear as the name specified in line 11,
Pidgin Stockwatch, in Pidgin’s Tools |
Plugins menu (Figure 4). Clicking the
checkbox on the left enables the plugin
and runs its plugin_load() routine. For

test purposes, you can disable the plugin
again, after which Pidgin will call the
plugin_unload() routine in line 34.

After doing all of this, the bud-
ding broker can then populate
the ~/.pidgin‑stockwatch.yml
configuration file with ticker
symbols for the shares to be
monitored, assign percentage
values, or accept the default of
two percent. After restarting,

Pidgin works with the updated values.
On a quiet day at the stock exchange,

you will probably forget that the plugin
has been installed at all. But as soon as
the stocks go on a roller coaster, you’ll
be alerted and can quickly contact your
favorite broker and engage in panic buy-
ing or selling. nnn

 Name Description

Language
Translator

Translates English to
other language

Olack Live chat for website

pidginTeX Renders math
expressions

Extended
Preferences

Provides often
requested preferences

132

 133 for my $stock (

134 keys %{ $self‑>{data} })

135 {

136 if (

137 $self‑>noteworthy($stock))

138 {

139 $self‑>{refdata} =

140 { %{ $self‑>{data} } };

141

 142 # reset 'prev'

143 for my $s (

144 keys

145 %{ $self‑>{refdata} })

146 {

147 $self‑>{refdata}‑>{$s}

148 ‑>[0] =

149 $self‑>{data}‑>{$s}

150 ‑>[1];

151 }

152

 153 $cb‑>($self‑>message);

154 last;

155 }

156 }

157 }

158

 159 #############################

160 sub message {

161 #############################

162 my ($self) = @_;

163

 164 my $msg = "\n";

165

 166 for my $stock (

167 keys %{ $self‑>{data} })

168 {

169 my ($prev, $last, $change)

170 = @{ $self‑>{data}

171 ‑>{$stock} };

172 $msg .=

173 "$stock: $last $change%\n";

174 }

175

 176 return $msg;

177 }

178

 179 #############################

180 sub noteworthy {

181 #############################

182 my ($self, $stock) = @_;

183

 184 my $price_ref =

185 $self‑>{refdata}‑>{$stock}

186 ‑>[0];

187

 188 my $price_now =

189 $self‑>{data}‑>{$stock}

190 ‑>[1];

191

 192 my $change_percent = abs(

193 (

194 $price_now ‑ $price_ref

195)

196) / $price_ref * 100;

197

 198 return ($change_percent >

199 $self‑>{conf}‑>{$stock});

200 }

201

 202 1;

 liSTing 3: WatchQuotes.pm (part2)

[1] Pidgin: http:// pidgin. im

[2] Listings for this article:
http:// www. linux‑magazine. com/
 Resources/ Article‑Code

[3] Perl Object Environment:
http:// poe. perl. org

[4] AnyEvent: http:// software. schmorp.
 de/ pkg/ AnyEvent. html

[5] Egan, Sean. Open Source Messaging
Application Development: Building
and Extending Gaim. Apress, 2005.
ISBN 1590594673

[6] A short guide to writing Pidgin plug
ins in Perl:
http:// developer. pidgin. im/ doxygen/
 dev/ html/ perl‑howto. html

[7] Sample plugin in Perl: http:// code.
 google. com/ p/ pidgin‑knotifications/
 downloads/ detail? name= knotifica‑
tions. pl& can=2& q=

[8] More thirdparty plugins:
http:// developer. pidgin. im/ wiki/
 ThirdPartyPlugins#
 DevelopmentofThird‑PartyPlugins

[9] Finance::YahooQuote: http:// search.
 cpan. org/ ~edd/ Finance‑YahooQuote/

 inFO

"Popular distros offer
a package for the Perl
interface to Pidgin."

 TABlE 2: Example Plugins

Features
Perl: Pidgin Stock Alerts

lInux-magazIne.cOm | lInuxprOmagazIne.cOm Issue 119 OctOber 2010 57

