
M
y Internet service provider
normally handles the job of
shoveling data packets
around fairly well. But if

something fails, I often get a script-read-
ing ignoramus on the hotline who totally
ignores elementary, logical principles.
Instead, they attempt to put the blame
on the user instead of telling the trained
system administrators who work with
them that the problem is obviously on
their side. Once, when I called to com-
plain about a slow DNS server, some-
body actually asked if my DSL modem
was on the floor or in the book case.

The Age of Spam
Just recently, I had a problem with their
SMTP server and wanted to avoid the
frustration of calling my provider. I don’t
send much in the line of email from my
home desktop, but when I do, I expect it
to reach its destination. For example, if
there’s a power failure, my UPS cuts in,

a fact that is noticed by Nagios, which in
turn quickly sends me an email.

Of course, I could turn to my hosting
provider instead, a private company who
doesn’t operate as a government-pro-
tected quasi-monopoly. Their SMTP
server is very reliable, but in the age of
spam, they won’t accept mail from un-
known IPs. Because the provider offers
SSH access, I could drill a tunnel like

ssh ‑L 1025:localhost:25 U

 mschilli@host.provider.com

from my local port 1025 to the SMTP
port (25) on the hosted computer. From
the point of view of the computer in my
hosting provider’s farm, it would look
like the request came from the leased
shared host Web server.

Dynamic Drilling
Budget hosting providers will probably
not want scrooges like myself keeping

SSH tunnels open day and night without
typing something into their leased web-
sites; but, if I only drill the tunnel when
I want to send out email and then tear it
down afterward, they’ll probably be
okay with it. To implement this, the
minimail daemon, written in Perl, listens
for requests from local mail clients on
the SMTP port (25). The clients are bliss-
fully unaware of the complexity behind
this, they’ll be under the impression that
they’re talking to a local mailserver.

The daemon accepts the request,
opens a tunnel on local port 1025 to port
25 of the hosting provider, then waits for
the connection to come up. For the local
mail client, this just looks like a fairly
slow mail server. The daemon then
shoves the request lines from the client
(local port 25) to local port 1025. Packets
are entering the tunnel and pushed
through to port 25 on the provider’s side
(Figure 1). Return packets, arriving back
through the tunnel are forwarded by the

Instead of running a local mailserver, a Perl daemon listens to outgoing SMTP requests and
drills a temporary SSH tunnel to a remote SMTP server on demand. By Michael Schilli

Perl script tunnels mail traffic on demand

 Tunnel Vision

a
lem

b
a
_a

rts, Foto
lia

Features
Perl: Drilling SSH Tunnels

August 2010 Issue 117 lInux-mAgAzIne.com | lInuxpromAgAzIne.com 56

daemon to the local client, which com-
pletes the impression that it is indeed
talking to the local SMTP server.

If multiple requests to send mail occur
in quick succession, it doesn’t make
sense to break down and build up the
tunnel again; to handle this case, the
daemon leaves the tunnel up for 10 sec-
onds after the last client has bailed out.
To keep this looking human in the host’s
logs, the script adds a random number
between 0 and 25 seconds to the wait.

To Root or Not to Root?
To allow the daemon in Listing 1 to
bind() the SMTP port (25), it must run
as the root user; to mitigate the security
risk this implies, the daemon drops these
privileges later on. A program launched
with sudo has the SUDO_USER set to the
environment variable of the account that
ran the sudo command. The script drops
its privileges and changes the effective
user ID to this non-privileged account.
The sudo_me() command in line 15 from
the CPAN Sysadm::Install module checks
if root ran the script and, if not, uses
sudo to change things.

The CPAN App::Daemon module ex-
ports the daemonize() function which
lets the script act as a daemon and pro-
cess the minimail start|stop com-
mands. It will put itself into the back-
ground after running through the start
sequence – only the logfile reveals what

the daemon is currently doing. The Log-
4perl logfile is set by the ‑l option or,
programmatically, via the App:: Daemon::
logfile variable, as shown in line 18. If
the daemon is launched in the fore-
ground with the ‑X option, the log out-
put is sent to Stderr instead.

The BEGIN block in lines 14-23 makes
sure that the POE module in line 25 is
not loaded until the process has been
daemonized (line 22). This is important,
so a helpful soul from the POE mailing
list told me; otherwise, POE won’t clean
up the child processes it creates later on.

Because App::Daemon also offers a
feature for dropping root privileges, line
16 of the module assigns a value of root

to the $as_user variable and thus leaves
the security switch to the script, which
handles it after binding the daemon to
port 25 in the forwarder code, starting at
line 48.

POE to the Rescue
Writing your own network daemon nor-
mally costs plenty of blood, sweat, and
tears, but, thankfully, CPAN offers a
number of POE components you just
need to glue together. For example, mini‑
mail creates the PoCoForwarder port for-
warder from the POE:: Component:: Cli-
ent:: TCP and POE:: Component:: Server::
TCP components. It binds with the local
$port_from port and forwards anything

01 #!/usr/local/bin/perl ‑w

02 #############################

03 # minimail ‑ SMTP daemon

04 # auto‑opening tunnels

05 # Mike Schilli, 2010

06 # (m@perlmeister.com)

07 #############################

08 use strict;

09 use Sysadm::Install qw(:all);

10 use App::Daemon

11 qw(daemonize);

12 use Log::Log4perl qw(:easy);

13

 14 BEGIN {

15 sudo_me();

16 $App::Daemon::as_user =

17 "root";

18 $App::Daemon::logfile =

19 "/var/log/minimail.log";

20 $App::Daemon::loglevel =

21 $INFO;

22 daemonize();

23 }

24

 25 use POE;

26 use PoCoForwarder;

27 use PoCoTimedProcess;

28

 29 my $port_from = 25;

30 my $port_to = 25;

31 my $tunnel_port = 1025;

32 my $real_smtp_host =

33 'host.provider.com';

34

 35 my $process =

36 PoCoTimedProcess‑>new(

37 heartbeat => 10,

38 timeout => int(rand(25)) +

39 10,

40 command => [

41 "ssh", '‑N', '‑L',

42 "$tunnel_port:" .

43 "localhost:$port_to",

44 $real_smtp_host

45],

46);

47

 48 my $forwarder =

49 PoCoForwarder‑>new(

50 port_from => $port_from,

51 port_to => $tunnel_port,

52 port_bound => sub {

53 INFO "Dropping privileges";

54 $< = $> = getpwnam(

55 $ENV{SUDO_USER});

56 },

57 client_connect => sub {

58 $process‑>launch();

59 },

60);

61

 62 $process‑>spawn();

63 $poe_kernel‑>run();

 LiSTiNg 1: minimail

Figure 1: The mail client talking to port 25 on the forwarder, whose TCP client session talks to

the tunnel.

Use "Mail Client"
in Fig. 1 (2x) -rls

Features
Perl: Drilling SSH Tunnels

lInux-mAgAzIne.com | lInuxpromAgAzIne.com Issue 117 August 2010 57

that arrives there to the $tunnel_port –
and vice versa. This is no trivial matter
because multiple mail clients can use the
local port at the same time and would
need to be served in parallel.

The second component, that is, PoCo‑
TimedProcess, uses the launch() method
to start a process like the tunnel for a
certain amount of time or extends its
lifetime if it is already running. Every
time the forwarder discovers a newly
docked client, it calls the launch()
method in the client_connect() call-
back (line 58). The method calls the ssh
command in lines 41-44,

ssh ‑N ‑L U

 1025:localhost:25 host.provider.com

thus connects to the host at host.pro‑
vider.com via the encrypted SSH proto-
col, logs in when it gets there, and,
thanks to the ‑N option, doesn’t start an
interactive shell but just hangs around
forwarding datastreams back and forth.

Port 1025 is the desktop-side end of
the tunnel; however, localhost in the
ssh command above refers to host.pro‑
vider.com, because the SSH session is
logged in there at this point. The 25 fol-
lowing the colon is the SMTP port on the

hosted machine. If the username name
on the hosted machine is not the same
as on the desktop, the call needs to add
a valid account name like mschilli@host.
provider.com to tell SSH which to use.

Component glue
What happens behind the scenes in the
two POE components? Figure 1 shows
the diagram with the server and client
components and the port numbers they
use. The port forwarder TCP server lis-
tening on port 25 winds up a TCP client
session for each client to connect them
to the tunnel independently.

001 #############################

002 # POE Port Forwarder

003 # Mike Schilli, 2010

004 # (m@perlmeister.com)

005 #############################

006 package PoCoForwarder;

007 use strict;

008 use Log::Log4perl qw(:easy);

009 use

010 POE::Component::Server::TCP;

011 use

012 POE::Component::Client::TCP;

013 use POE;

014

 015 #############################

016 sub new {

017 #############################

018 my ($class, %options) = @_;

019

 020 my $self = {%options};

021

 022 my $server_session =

023 POE::Component::Server::TCP

024 ‑>new(

025 ClientArgs => [$self],

026 Port => $self‑>{port_from},

027 ClientConnected =>

028 \&client_connect,

029 ClientInput =>

030 \&client_request,

031 Started => sub {

032 $self‑>{port_bound}‑>(@_)

033 if defined

034 $self‑>{port_bound};

035 },

036);

037

 038 return bless $self, $class;

039 }

040

 041 #############################

042 sub client_connect {

043 #############################

044 my (

045 $kernel, $heap,

046 $session, $self

047)

048 = @_[

049 KERNEL, HEAP,

050 SESSION, ARG0

051];

052

 053 $self‑>{client_connect}

054 ‑>(@_)

055 if defined

056 $self‑>{client_connect};

057

 058 my $client_session =

059 POE::Component::Client::TCP

060 ‑>new(

061 RemoteAddress =>

062 "localhost",

063 RemotePort =>

064 $self‑>{port_to},

065 ServerInput => sub {

066 my $input = $_[ARG0];

067

 068 # $heap is the

069 # tcpserver's (!) heap

070 $heap‑>{client}

071 ‑>put($_[ARG0]);

072 },

073 Connected => sub {

074 $_[HEAP]‑>{connected} = 1;

075 },

076 Disconnected => sub {

077 $kernel‑>post($session,

078 "shutdown");

079 },

080 ConnectError => sub {

081 $_[HEAP]‑>{connected} = 0;

082 $kernel‑>delay(

083 'reconnect', 1);

084 },

085 ServerError => sub {

086 ERROR $_[ARG0]

087 if $_[ARG1];

088 $kernel‑>post($session,

089 "shutdown");

090 },

091);

092

 093 $heap‑>{client_heap} =

094 $kernel‑>ID_id_to_session(

095 $client_session)

096 ‑>get_heap();

097 }

098

 099 #############################

100 sub client_request {

101 #############################

102 my ($kernel, $heap,

103 $request) =

104 @_[KERNEL, HEAP, ARG0];

105

 106 return if

107 # tunnel not up

108 # yet, discard

109 !$heap‑>{client_heap}

110 ‑>{connected};

111

 112 $heap‑>{client_heap}

113 ‑>{server}‑>put($request);

114 }

115

 116 1;

 LiSTiNg 2: PoCoForwarder.pm

Features
Perl: Drilling SSH Tunnels

August 2010 Issue 117 lInux-mAgAzIne.com | lInuxpromAgAzIne.com 58

The class expects the port_from port
(the one on which the server is listening
to client requests), the port_to port (the
desktop end of the tunnel), and two call-
back routines as parameters. The com-
ponent jumps to the subroutine refer-
ence stored in port_bound once the
server has bound to port 25 and can thus
drop its root privileges.

When dropping root privileges, it is
important to do it in the right order for
effective and real user IDs; otherwise,
the daemon could reestablish its root
privileges later [2]. With multiple paral-
lel threads, PoCoTimedProcess internally
would have to prevent a race condition
launching the tunnel twice. In the one-
process, one-thread environment that
POE provides, a simple variable check
without locking is fine – robust, easy to
code, and easy to understand when you
come back to the program years later!

The second forwarder callback, cli‑
ent_connect, is accessed whenever a
mail client docks on port 25. The PoCo‑

TimedProcess component’s launch()
method, which is executed in the call-
back, then sets up the tunnel if it doesn’t
exist. Internally, PoCoForwarder provides
a PoCo::Client::TCP type POE compo-
nent for each client connection, and
each connects to the desktop tunnel
port. In other words, although PoCo::
Server:: TCP can manage any number of
clients, you need to deploy a separate
PoCo::Client::TCP component for each.

Closures: Confusingly
Elegant
Line 32 in Listing 2 shows how the com-
ponent implements the port_bound call-
back. The POE TCP server created in line
24 enters the Started state after launch-
ing successfully. PoCoForwarder retrieves
the subroutine reference defined by
minimail from the $self object hash and
calls it. The callback code defined in
Minimail handles everything else.

Note that $self is not in the scope of
the handler assigned to the Started

state. Instead, it comes courtesy of the
PoCoForwarder class’s new() constructor;
however, the subroutine mutates to a
closure that includes the lexical $self
variable and thus remains valid after
leaving the scope of the constructor (but
only within the callback).

On the other hand, the Client‑Args
parameter in line 25 makes sure the
server component provides the $self ob-
ject hash as an argument, ARG0, if it en-
ters the client_connect() callback func-
tion. In line 54, the component runs the
client_connect callback set by the main
script earlier, which launches the tunnel
process. Note the timing problem that
occurs here because it is difficult to pre-
dict how long the tunnel will take to
come up. This means that our newly
fired up TCP client might try to bind to a
port later when no one is listening in.

In this case, it isn’t an issue. The TCP
client enters the ConnectError state (line
80), which schedules a reconnect event
for one second later in POE’s todo list

001 #############################

002 # POE Timed Process

003 # Launcher Component

004 # Mike Schilli, 2010

005 # (m@perlmeister.com)

006 #############################

007 package PoCoTimedProcess;

008 use strict;

009 use warnings;

010 use POE;

011 use POE::Wheel::Run;

012 use Log::Log4perl qw(:easy);

013

 014 #############################

015 sub new {

016 #############################

017 my ($class, %options) = @_;

018

 019 my $self = {%options};

020 bless $self, $class;

021 }

022

 023 #############################

024 sub launch {

025 #############################

026 my ($self) = @_;

027

 028 $poe_kernel‑>post(

029 $self‑>{session}, 'up');

030 }

031

 032 #############################

033 sub spawn {

034 #############################

035 my ($self) = @_;

036

 037 $self‑>{session} =

038 POE::Session‑>create(

039 inline_states => {

040 _start => sub {

041 my ($h, $kernel) =

042 @_[HEAP, KERNEL];

043

 044 $h‑>{is_up} = 0;

045 $h‑>{command} =

046 $self‑>{command};

047 $h‑>{timeout} =

048 $self‑>{timeout};

049 $h‑>{heartbeat} =

050 $self‑>{heartbeat};

051 $kernel‑>yield(

052 'keep_alive');

053 $kernel‑>yield(

054 'heartbeat');

055 },

056 sig_child => sub {

057 delete $_[HEAP]‑>{wheel};

058 },

059 heartbeat => \&heartbeat,

060 up => \&up,

061 down => \&down,

062 keep_alive => sub {

063 $_[HEAP]‑>{countdown} =

064 $_[HEAP]‑>{timeout};

065 },

066 closing => sub {

067 $_[HEAP]‑>{is_up} = 0;

068 },

069 }

070)‑>ID();

071 }

072

 073 #############################

074 sub heartbeat {

075 #############################

076 my ($kernel, $heap) =

077 @_[KERNEL, HEAP];

078

 079 $kernel‑>delay("heartbeat",

080 $heap‑>{heartbeat});

081

 082 if ($heap‑>{is_up}) {

083 INFO

084 "Process is up for another ",

085 $heap‑>{countdown},

086 " seconds";

087

 LiSTiNg 3: PoCoTimedProcess.pm

Features
Perl: Drilling SSH Tunnels

lInux-mAgAzIne.com | lInuxpromAgAzIne.com Issue 117 August 2010 59

with the delay() POE kernel function.
This game can go on for a couple of
rounds, but the tunnel will come up
eventually. The TCP client then binds
the port, which is now working, and can
enter the Connected state as of line 73.

The Tunnel is Ready
If Minimail sends a command, the TCP
server branches to the client_request
state and thus to the handler (lines 100-
114), which checks that the tunnel is al-
ready up and ignores the client com-
mand if the connection is down. The
SMTP protocol stipulates the server has
to start the communication with a greet-
ing. A well-behaved client will not start
to talk until the server says hello, which

only happens if the tunnel is up. With
other protocols (e.g., HTTP), it is differ-
ent; in this case, the forwarder would
have to buffer the client commands until
the connection was up then forward
them in lieu of the client in a bundle.

If the tunnel is ready, the heap vari-
able connected is 1 in the Connected state
handler. To forward the message to the
tunnel, line 112 retrieves the saved TCP
client heap and pulls out its server
entry, whose put method is then used to
forward the request to the tunnel entry
the client docked onto earlier. Note that
client_request() is a server session
callback that knows nothing about the
client, which is running in another ses-
sion, or the client’s heap. The client_

heap heap variable, set in line 93 in the
server session, solves this problem.

When messages come back out of the
tunnel, the TCP client switches to the
ServerInput state in line 65, which then
uses the put() method to return the text
with the client reference stored on the
heap, and hence to Minimail. If Minimail
disconnects from the TCP server, the
server enters the Disconnected state, and
the handler sends a shutdown event to
the running session (line 77), finally in-
terrupting the client server connection.

Processes with
Countdown
Handles in the PoCoTimedProcess.pm
component (Listing 3) set up and break

 088 $heap‑>{countdown} ‑=

089 $heap‑>{heartbeat};

090

 091 if (

092 $heap‑>{countdown} <= 0)

093 {

094 INFO

095 "Time's up. Shutting down";

096 $kernel‑>yield("down");

097 return;

098 }

099 }

100 }

101

 102 #############################

103 sub up {

104 #############################

105 my ($heap, $kernel) =

106 @_[HEAP, KERNEL];

107

 108 if ($heap‑>{is_up}) {

109 INFO "Is already up";

110 $_[KERNEL]

111 ‑>yield('keep_alive');

112 return 1;

113 }

114

 115 my ($prog, @args) =

116 @{ $heap‑>{command} };

117

 118 $heap‑>{wheel} =

119 POE::Wheel::Run‑>new(

120 Program => $prog,

121 ProgramArgs => [@args],

122 CloseEvent => "closing",

123 ErrorEvent => "closing",

124 StderrEvent => "ignore",

125);

126

 127 my $pid =

128 $heap‑>{wheel}‑>PID();

129 INFO "Started process $pid";

130

 131 $kernel‑>sig_child($pid,

132 "sig_child");

133 $kernel‑>sig(

134 "INT" => "down");

135 $kernel‑>sig(

136 "TERM" => "down");

137

 138 $_[KERNEL]

139 ‑>yield('keep_alive');

140 $heap‑>{is_up} = 1;

141 }

142

 143 #############################

144 sub down {

145 #############################

146 my ($heap, $kernel) =

147 @_[HEAP, KERNEL];

148

 149 if (!$heap‑>{is_up}) {

150 INFO

151 "Process already down";

152 return 1;

153 }

154

 155 INFO "Killing pid ",

156 $heap‑>{wheel}‑>PID;

157 $heap‑>{wheel}‑>kill();

158 $heap‑>{is_up} = 0;

159 $kernel‑>sig_handled();

160 }

161

 162 1;

 LiSTiNg 3: PoCoTimedProcess.pm (part2)

Figure 2: When a message needs to be sent,

Minimail needs to open the tunnel for the

first request …

Figure 4: … and the client can then exchange

SMTP commands as if connected directly. The

server thinks it is talking to a local client.

Figure 3: … then the SMTP server at the

other end of the tunnel will respond within

about one or two seconds …

Features
Perl: Drilling SSH Tunnels

August 2010 Issue 117 lInux-mAgAzIne.com | lInuxpromAgAzIne.com 60

down the tunnel. When minimail uses
spawn (line 62) to launch the process
timer’s POE session, its first course of
action is running the _start handler de-
fined in PoCoTimedProcess.pm (line 40).
The handler in turn uses a closure to ex-
tract all the critical parameters, such as
heartbeat (check frequency for a time-
out), timeout (number of seconds until
tunnel breakdown), and command (the
SSH command for setting up the tunnel)
from the self object hash and stores
them on the session’s own heap. It then
sets two events for processing by the
POE kernel at a later stage: keep_alive
and heartbeat. The former resets the
heap countdown variable to the maxi-
mum value in seconds to keep a tunnel
open, which is defined in timeout. Addi-
tionally, POE calls the heartbeat event at
regular intervals, thanks to the delay
method in line 79, every time the num-
ber of seconds defined in the heap
heartbeat variable has elapsed.

The tunnel is closed at first, but as
soon as the launch() method triggers the
up event and POE activates the matching
up handler (line 103), a POE::Wheel::Run
object (line 119) fires up the SSH tunnel
process. The handlers for the Unix INT
and TERM signals defined in lines 134 and
136 ensure that the minimail process will
tear down an open tunnel if the main
script is killed unexpectedly.

Once the tunnel has reached its maxi-
mum lifetime, line 96 triggers the down
event and the matching handler (line
144) sends a kill signal to the ssh pro-
cess. To let other handlers know that the
tunnel no longer exists, down() sets the
is_up variable to 0. This completes the
processing of the triggering signal; the
call to sig_handled() in line 159 pre-
vents the POE kernel from acting on it as
well, which would be undesirable be-
cause the kernel’s default action on
these signals is to terminate the daemon.

To prevent the killed process mutating
into a zombie, joining a growing army of
other zombies, and finally bringing the
computer to its knees, line 131 defines a
sig_child handler, which reaps the
dying process and then enters the sig_
child state of the POE session, defined
in line 56. This helps POE give the dying
tunnel its last rites (internally, via wait‑
pid()) and prevents it from going to
zombie hell. The handler finally deletes
the last remaining reference to POE::

Wheel. POE figures out it has nothing
left to do and neatly folds up the kernel.

Keys instead of
Passwords
Because a daemon can’t use an interac-
tive password dialog to identify itself,
the ssh tunnel command requires the
user to create a keypair:

ssh‑keygen ‑t rsa

The keys will typically be stored in the
id_rsa (Private Key) and id_rsa.pub
(Public Key) files in the .ssh directory
below the user’s home directory.

To make sure the hosting service pro-
vider lets the daemon connect to it, the
user has to push the public key created
with the no passphrase option to the
server. This involves appending the local
content of the id_rsa.pub file to the .
ssh/authorized_keys file on the hosting
server. If you then enter the ssh tunnel
command in Minimail manually (with-
out the ‑N option), you should be logged
in to the hosting server without being
asked for your password.

Trial Run with Telnet
The Telnet command in Figure 2 with
localhost and port 25 discovers whether
the mail server that was launched by
sudo minimail start really works. If the
daemon tunnel is down, Minimail will
delay the response by one or two sec-
onds until the mail server provider-side
responds and then patch through to the
SMTP server on the other end (Figure 3).

If you speak some SMTP, you can try
out a couple of tricks (for test purposes
only, of course – Figure 4). The daemon
will busily take note of this in the /var/
log/minimail.log logfile (Figure 5). It
will not store the mail headers or text for
data protection reasons.

While running tests with the telnet
command, you can get out of a hung

session caused by a server not releasing
the client by pressing the keyboard
shortcut Ctrl+], which takes Telnet
down into a shell that you can terminate
by pressing q.

Waiting for a Power
Failure
To launch the Minimail server automati-
cally every time you boot your machine,
you need to add

SUDO_USER=mschilli /path/to/minimail

on Ubuntu to the /etc/init.d/minimail
file, which you might need to create,
then make the file executable with chmod
+x and finally call

sudo update‑rc.d minimail defaults 80

to add the script to the boot process.
When the power returns, the new mail
server boots automatically and makes
sure it is ready to take messages once
Nagios reports that power has been re-
stored and disaster averted. nnn

[1] Listings for this article: http:// www.
 linuxpromagazine. com/ Resources/
 Article‑Code

[2] Dropping privileges, but properly:
http:// perlmonks. com/ ? node_
id=833950

 iNFO

Michael Schilli works as a
software engineer with
Yahoo! in Sunnyvale, Cali-
fornia. He is the author of
Goto Perl 5 (German) and
Perl Power (English), both published by
Addison-Wesley, and he can be con-
tacted at mschilli@perlmeister.com. Mi-
chael’s homepage can be found at http://
 perlmeister. com.

 AuThOR

Figure 5: The daemon logs critical events.

Features
Perl: Drilling SSH Tunnels

lInux-mAgAzIne.com | lInuxpromAgAzIne.com Issue 117 August 2010 61

