
T
he GNU readline and history
utilities are real IT dinosaurs, but
still extremely useful and widely
used. They provide a mechanism

for editing and repeating user input to
any command-line program, and it
doesn’t involve much effort on the pro-
grammer’s part.

Long-Winded SQL
For example, if you type a lengthy SQL
query in the mysql MySQL client (Figure
1), you will definitely appreciate the
ability to press the Up arrow key to re-
peat the input at the next prompt. This
way, you can either repeat the com-
mand, or modify it and resubmit it after-
ward. Incidentally, these functions don’t
rely on the MySQL client’s \e command,
which opens a full-blown editor to make
modifications. Instead, if you enter a
long command line and then discover
one of the words contains a typo, you

can simply press the Left arrow key to go
back to the start of the line and correct
the command before you submit it.

As a quick inspection of the MySQL
source code reveals, the database
doesn’t implement this practical mecha-
nism itself; instead, it uses the C read‑
line() and add_history() functions
from the GNU Readline and History li-

braries to read user input and add the se-
lected commands to a pool for access at
some later time. As with all GNU tools,
invoking the documentation tool with
info readline or info history shows
the man pages for the utilities in a genu-
ine 1970s look. Quickly, a few browsing
tips: Pressing the N key tells info to
jump to the next chapter, whereas P

A free history function in Perl scripts

Type
 Less

If you are interested in adding a neat and practical history mechanism with an editing func-

tion to an interactive Perl tool you have programmed, all you need to do is include the GNU

Readline and History libraries. By Michael Schilli

01 #!/usr/local/bin/perl ‑w

02 use strict;

03

 04 use Term::ReadLine;

05 my $term =

06 Term::ReadLine‑>new(

07 "myapp");

08

 09 while (1) {

10

 11 my $input =

12 $term‑>readline(

13 "input>");

14

 15 last unless defined $input;

16 print "Input was '$input'\n";

17

 18 if ($input =~ /\S/) {

19 $term‑>addhistory(

20 $input);

21 }

22 }

 LiSting 1: readline-test

R
a
m

a
n

 M
a
isei, 12

3
R

F

Features
Perl: readline and history

July 2010 Issue 116 www.lInux-magazIne.com 2

takes you back to the last chapter you
viewed, and the Tab key moves to the
next linked bullet on a page.

For the last session, you can still ac-
cess the history after restarting the
MySQL client. How does this work? As
Figure 2 shows, the GNU history mecha-
nism used in this example dumps the in-
formation into the ~/.mysql_history
file. The final command, quit, doesn’t
appear in the history file because MySQL
only saves useful commands and notices
that there is nothing worthwhile to save.
The program exits before the call to add_
history() occurs.

Spoiled for Perl
Perl offers spoiled script programmers a
convenient interface to the GNU librar-
ies. The Perl Term::ReadLine::Gnu mod-
ule from CPAN communicates with the C
layer of the installed GNU libraries and
offers the Perl programmer an object-ori-
ented layer. The Term::ReadLine module
is included with Perl distributions by de-
fault, although it only offers restricted
functionality. For a fully functional

Term::ReadLine, you need to install
Term::ReadLine::Gnu from CPAN.

Listing 1 creates a Term::ReadLine ob-
ject and calls its readline() method,
which in turn prompts the user to type a
command. If it contains usable charac-
ters, it makes sense to call add_his‑
tory() to add it to the line buffer and be
able to dig it out again later with the use
of arrow keys.

The sample listing takes the easy way
out here and accepts anything apart
from all-blank lines as useful input, but
of course, I could imagine some sort of
sophisticated input validation instead.
For more information on terminal pro-
gramming in Perl, refer to the man pages
of the two aforementioned CPAN mod-
ules, or some fairly spartan documenta-
tion scattered throughout several Perl
books [2].

garbled Characters in
the Debugger
The internal Perl debugger also has a
history mechanism that avoids users
having to continually type the same old
commands. But on certain installations,
if you press the arrow keys to pull up
previous commands, all you get is gar-
bled characters, such as:

perl ‑d test.pl

DB<1> $ ^[[A,

This kind of output is a sure sign that
the victim has forgotten to install the

Perl wrapper for the GNU Readline li-
brary from CPAN as in:

cpan> install Term::ReadLine::Gnu

What’s going on? When launched, Perl’s
debugger checks to see whether the Gnu
module really is available and, if not,
provides a functional but restricted ter-
minal environment without a history
function.

Without some manual attention, cur-
sor navigation with Gnu Readline uses
Emacs commands, which might sound
strange for fans of Vi. Rumor has it that
there are people out there who actually
broke their fingers typing complicated
Emacs keyboard shortcuts. The follow-
ing option

set editing‑mode vi

in ~/.inputrc below your home direc-
tory will save you from this fate by auto-
matically shifting Readline into Vi mode.

If you don’t notice that Readline is in
the wrong editor mode until you have
started typing, Meta+Ctrl+J switches
modes. This looks very much like an
Emacs-only command, but Vi mode un-
derstands it, too, and switches to Emacs
mode. If your keyboard doesn’t have a
Meta key, simply tap the Esc key and
then press Ctrl+J.

Instead of pressing Ctrl+B to move the
cursor to the left, Vi aficionados would
then press Esc to switch to command
mode and then press H until the cursor
reached the desired position. Pressing I
takes you back to insert mode.

Writing History
In a history of dozens of commands,
users will find what they are looking for
more quickly if they search for certain

Figure 1: A command-line session with the

mysql MySQL client.

Figure 2: Command line input is stored in the

~/.mysql_history file for later sessions.

01 #!/usr/local/bin/perl ‑w

02 use strict;

03

 04 $| = 1;

05 for (1 .. 3) {

06 print "Input> ";

07 my $in = <STDIN>;

08 chomp $in;

09 print "You said '$in'\n";

10 }

 LiSting 2: wrapper-test 01 #!/usr/local/bin/perl ‑w

02 use strict;

03

 04 use Term::ReadLine;

05 my $term =

06 Term::ReadLine‑>new(

07 'myapp');

08 my $attribs = $term‑>Attribs;

09 $attribs

10 ‑>{completion_entry_function}

11 = $attribs

12 ‑>{list_completion_function};

13

 14 $attribs‑>{completion_word} =

15 [qw(install remove quit)];

16

 17 while (1) {

18 my $cmd = $term‑>readline(

19 "myapp> ");

20 last if $cmd =~ /^quit/i;

21 }

 LiSting 3: readline-complete

Features
Perl: readline and history

 www.lInux-magazIne.com Issue 116 July 2010 3

entries instead of just browsing through
pages full of inappropriate commands.
In Vi mode, the Esc key takes you back
to command mode, where you can then
type a slash, followed by parts of the
search string you are looking for and
then the Return key to view a list of
matches. To scroll through the result list,
press N (next) and P (previous).

Once you have the history entry you
were looking for, the Return key executes
it, but you can use familiar Vi com-
mands to edit the command line. In
Emacs mode, Ctrl+R searches backward
and displays matches for the string you
entered in this active search mode (Fig-
ures 3 and 4).

Forced Development
Programs coded without a Readline
function, and which thus do have the
ability to remember and edit input lines,
can be taught the required tricks with
the rlwrap [3] wrapper. Listing 2 shows
a simple Perl script that accepts input
from the command line three times,
using the typical Perl <STDIN> construct,
and then outputs the user input.

In Figure 5, you can see how the user
presses the Up arrow key to access the
last entry, but instead harvests a garbled
line, ^[[A. In contrast, the user launches
the same script in Figure 6 but with the
rlwrap wrapper, and hey presto, press-
ing the Up arrow key in line three con-
jures the data typed in the second line of
input back onto the screen. Because of
persistent storage, the data will even be
available on a subsequent run of the
script.

A close look at your home directory
shows a .wrapper‑ test_history file.

How does this work? The wrapper rl‑
wrap simply uses LD_PRELOAD to over-
load the input functions of the original
program and replaces them with wrap-
pers that collaborate with GNU’s Read-
line and History libraries.

You Complete Me
Readline not only offers an editing func-
tion but will finish off incomplete com-
mand lines when you press the Tab key.
Just like the Bash completion mecha-
nism, which I discussed in a previous
column [4], users can customize this
function.

Listing 2 gives an example of a simple
command interpreter that only under-
stands the install, remove, and quit
commands. The API for the command
extension to the Readline library is
somewhat complex; the Readline ob-
ject’s completion_entry_function entry
expects a callback, which Readline will
call multiple times if the user presses
Tab once, until all the suggestions are
made available.

Readline adds two parameters when-
ever the callback runs: $count and
$word. The $word parameter is the word
to be completed – that is, the string at
the end of which the cursor was located
when the user pressed Tab. For the first
call, $count is 0 and then is incremented
for all following calls.

In other words, the callback function
is expected to initialize itself and return
the first possible completion when
$count is equal to 0 and to return the
next option from a list of possible com-
pletions while $count is increasing on
subsequent calls. A return value of

undef by the callback indicates to Read-
line that the end of the list has been
reached and all possible completions
have been exhausted.

If only one completion exists for the
word, the callback function returns the
results when called, with $count equal
to 0 and undef for $count equal to 1.
Fortunately, for programmers,
Term::ReadLine::Gnu already has a call-
back function for simple applications; it
is available in the $attribs reference of
the list_completion_function. This
function will complete any words it finds
in a special array below the completion_
word hash entry.

Instead of having to write a callback
function, programmers can simply store
a reference to an array of keywords pos-
sible to complete in the completion_
word hash entry and then set the value
of the completion_entry_function
entry to the function reference of list_
completion_function. This covers
handling multiple calls with different
counts automatically.

Now if the script readline‑complete
in Listing 3 asks for a command after
showing the myapp> prompt, and if the
user then presses I+Tab, Readline will
thus complete the user’s input to the in‑
stall command, the only possible com-
mand that begins with that letter. It will
save the user six key presses in the pro-
cess, which doesn’t sound like much but
tends to add up over the course of a pro-
grammer’s work day, and will go easy on
those never-resting fingers and their
stressed tendons. nnn

Figure 3: In Emacs search mode, Readline fetches the last command

containing an “o” when you press the o key …

Figure 4: … and if you type ow, the mechanism will narrow down the

result list to commands containing the latter.

[1] Listings for this article: http:// www.
 linux‑magazine. com/ Resources/
 Article‑Code

[2] Wainwright, Peter. Pro Perl. Apress
Verlag, 2005, pg. 551

[3] rlwrap wrapper : http:// utopia.
 knoware. nl/ ~hlub/ rlwrap/ man. html

[4] “Perl Completion” by Michael Schilli,
Linux Magazine, May 2010, pg. 71

 inFo

Figure 5: Without Readline support, the

arrow key only generates garbled output

rather than finding previous entries.

Figure 6: The rlwrap wrapper adds Readline

support without modifying the program and

thus conjures up the previous command lines

on request.

Features
Perl: readline and history

July 2010 Issue 116 www.lInux-magazIne.com 4

