
f you look at 100-year-old black-and-

white images, you can’t help notic-

ing the sepia tint. The black areas in

particular are likely to have yellowed sig-

nificantly over the years, whereas the

lighter hues will only have a slight tint.

On my last trip to my home country,

Germany, I had the idea of converting a

couple of shots I had taken there with

my digital camera (Figure 1) into black-

and-white and aging them artificially

(Figure 2), just to illustrate how much

more colorful I perceive the scenery in

my current residence, San Francisco.

According to Wikipedia [3], the sepia

tint of old photographs comes from a

With the GIMP image editing program, and a little help from Perl, you can enhance your digital photos and

transform a modern image into a nostalgic turn-of-the-century shot. BY MICHAEL SCHILLI

Perl: Photos Effects

74 ISSUE 102 MAY 2009

pigment that was used in photography

as of the late 19th century. It was taken

from a cuttlefish that is indigenous to

the English Channel and that has the of-

ficial Latin name Sepia officinalis. To

achieve the same effect with digital im-

ages, the artist has to tint the darker

parts of the image yellowish brown (Fig-

ure 3). The colors at the middle of the

spectrum are not greatly affected by this,

and the light parts not at all.

It is not sufficient to simply remove

the color information from the image

and dye it yellow uniformly – to be con-

vincing, more subtle measures are

needed. Digital photo specialist Eric Je-

schke published a number of GIMP oper-

ations [4], which, if applied in sequence,

produce convincingly original “pre-war”

pictures. The CPAN Gimp Perl module

lets you combine the individual steps as

a Perl script, which you can then run

against a number of photos.

The sepiafy script (Listing 1) expects

an image file at the command line, per-

forms a number of transformations on

it, and then outputs an artificially aged

black-and-white image with a yellow

tint. For example, the sepiafy image.jpg

command results in a file called im-

age-sepia.jpg, which can then be viewed

with a tool like eog (Eye of Gnome).

As explained in one of my earlier col-

umns [5], GIMP scripts need to cut

through a fair amount of red tape before

they can actually talk to GIMP. The regis-

ter()function called in line 21 defines a

name, a menu entry, and a number of

other mandatory values that are fairly

useless in the command-line version,

such as the name of the author and help

text. Line 34 finally enters GIMP by call-

ing the event loop main(). Once there,

thanks to the entry in line 31, GIMP then

calls sepiafy() defined in lines 37ff.

The gimp_file_load() function in line

41loads image files in any format sup-

ported by GIMP and converts them into

GIMP’s native, internal format. If the

load procedure fails because the speci-

fied file does not exist or is unreadable,

gimp_file_load() returns undef and the

test condition in line 45 terminates the

program with an error message.

To manipulate an image in GIMP, you

first need to specify the so-called “draw-

able” abstraction of the image the opera-

tion should relate to. In this case, it is

the active (and only) layer in the GIMP

image. The image_get_active_layer()

function returns this layer if you pass it

the $img reference returned by the previ-

ous call to the imager loader.

The desaturate_full() method (line 53)

removes all the color information from

the drawable layer. The parameter 2

Perl: Photos Effects

75ISSUE 102MAY 2009

specifies the DESATURATE-AVERAGE al-

gorithm for this. Alternatively, you could

have used DESATURATE-LIGHTNESS (0)

and DESATURATE-LUMINOSITY (1),

which convert colors to grayscales on

the basis of their lightness or luminosity

values, respectively, and return slightly

different results.

The result is a grayscale image (Figure 4)

that still lacks the brightness-based sepia

tint. To add the tint, the layer_copy()

function (line 57) creates a copy of the

original layer ($sepia_layer) in the

image. An empty layer would have been

sufficient for the purposes here, but by

copying the existing layer, the height and

width are automatically correct. The pa-

rameter of 1 tells the new layer to create

an alpha channel, which you will need

later to create a so-called layer mask.

Line 60 calls layer_set_mode() with

the parameter COLOR_MODE to define

how the new layer will overlay the origi-

nal to create an overall image. In this

way, their colors mix evenly whereas

other modes wipe out their peer layers,

or “burn” or “dodge” them. A final call

to image_add_layer() (line 65) drops the

newly created, but unassigned, layer at

the top of the layer dialog describing the

image being edited. A parameter of -1

tells it to take the uppermost position.

But why do you need the new $sepia_

layer? The script fills it with the RGB

color (162,138,101), the yellowish-brown

sepia hue, and then applies it to the orig-

inal image layer, adding a layer mask

that is used to apply the color on the

basis of the brightness of the original

pixels. The drawable_fill() method in

line 70 takes care of filling the layer with

GIMP’s foreground color, set via gimp_

context_set_foreground() in line 68. A

value of 0 passed to drawable_fill() in-

structs GIMP to use the FORE-

GROUND-FILL mode.

Perl: Photos Effects

76 ISSUE 102 MAY 2009

001 #!/usr/bin/perl

002 use warnings;

003 use strict;

004

 005 use Gimp qw(:auto);

006 use Gimp::Fu;

007 use Getopt::Std;

008 use Log::Log4perl qw(:easy);

009

 010 Log::Log4perl->easy_init(

011 $DEBUG);

012 DEBUG "Starting up";

013

 014 my $menu =

015 "<Toolbox>/Xtns/Perl-Fu/Sepiafy";

016

 017 my $file = $ARGV[0];

018 die "No file"

019 unless defined $file;

020

 021 register(

022 "perl_fu_sepiafy", # Name

023 "Sepia Toning", # Explain

024 "", # Help

025 "", # Author

026 "", # Copyright

027 "", # Date

028 $menu, # Menu

029 "*", # Images accepted

030 [undef], # No parameters

031 \&sepiafy # Function

032);

033

 034 exit main();

035

 036 #############################

037 sub sepiafy {

038 #############################

039

 040 my $img =

041 gimp_file_load(

042 RUN_NONINTERACTIVE, $file,

043 $file);

044

 045 die "Can't load $file"

046 unless $img;

047

 048 my $layer =

049 image_get_active_layer(

050 $img);

051

 052 DEBUG "Desaturate";

053 $layer->desaturate_full(2);

054

 055 # 2: Average

056 my $sepia_mask =

057 $layer->layer_copy(1);

058

 059 # 1: Add Alpha Channel

060 $sepia_mask->layer_set_mode

061 (COLOR_MODE);

062

 063 # Insert layer above

064 # active layer

065 $img->image_add_layer(

066 $sepia_mask, -1);

067

 068 gimp_context_set_foreground(

069 [162, 138, 101]);

070 $sepia_mask->drawable_fill(

071 0);

072

 073 # 0: FOREGROUND-FILL

074 DEBUG "Adding layer mask";

075 my $layer_mask = $sepia_mask

076 ->layer_create_mask(0);

077

 078 # 0: White mask

079 $sepia_mask->layer_add_mask(

080 $layer_mask);

081

 082 $layer->edit_copy();

083

 084 my $float =

085 $layer_mask->edit_paste(

086 0);

087

 088 # 0: Clear selection

089 # 1: Paste behind it

090 $float->invert();

091 $float->floating_sel_anchor(

092);

093

 094 DEBUG "Flattening image";

095 $img->flatten();

096 $layer =

097 $img->get_active_layer;

098

 099 $layer->curves_spline

100 (HISTOGRAM_VALUE,

101 [0, 0, 58, 36, 255, 255]

102);

103

 104 $file =~ s/\./-sepia./g;

105

 106 DEBUG "Saving $file";

107 gimp_file_save(

108 RUN_NONINTERACTIVE,

109 $img, $layer,

110 $file, $file

111);

112

 113 return $img;

114 }

Listing 1: sepiafy

If my aim was simply to spread the

sepia tint evenly over the original layer,

the script could collapse the two layers

right now and finish up because

COLOR_MODE in line 61 would gently

merge the color information (Figure 5).

As a matter of fact, this is similar to how

GIMP’s preset sepia tint function works,

but I like the results of Jeschke’s process

much better.

Because sepiafy needs to apply more

tint to the darker parts of the image than

to the lighter parts, I will use a layer

mask. The mask specifies how the sepia-

tinted layer interacts with the original

layer of the image. Line 76 creates the

mask. The parameter 0 stands for

ADD-WHITE-MASK, which is a mask

comprising white-only pixels. The subse-

quent call to layer_add_mask() (line 79)

adds the newly created mask to the

$sepia_mask layer.

In GIMP, masks select parts of an image,

just as you would with the selection tool

to create a rectangular or circular selec-

tion in an image. GIMP draws “marching

ants” around the selection when you do

so and stores the selection information

as a black-and-white image in which the

white regions represent the selected

parts of the image and the dark pixels

represent unselected areas.

If the user draws a rectangle at the

center of the image, the corresponding

mask is a black image with a white rect-

angle at its center. And Masks can go

even further: In contrast

to mouse-based selec-

tions, masks can also de-

fine grayscales, in which

the areas of the image are

selected “softer” or

“harder.”

These grayscale images

can be put to intelligent

use as filters. Instead of

painstaking manual selec-

tions, the user defines a

mask image and GIMP

automatically selects the

parts of the original image

that have corresponding

light pixels in the mask

image.

To define how the lay-

er’s pixels are to be ap-

plied to the image, GIMP

lets you define a layer

mask for any layer. The

white areas of this gray-

scale mask make the layer pixels 100

percent opaque, whereas the black pix-

els in the mask make the layer 100 per-

cent transparent; that is, they disable

this part of the layer. For gray areas,

GIMP applies the layer value to a certain

degree, reflecting the value in the mask.

Figure 6 shows the Layers dialog with

a big black circle that I added to the

white background of the layer mask in

the sepia layer as a test;

the layer’s overlay mode

is set to “Normal.” As you

can see in Figure 7, GIMP

does not change the origi-

nal image in the black

part of the mask but ap-

plies sepia to the white

parts and ignores the

image in the process. This

approach is definitely not

the right one, but a gray-

scale mask will get me

closer to my goal.

What does the mask need

to look like to apply a re-

alistic looking sepia tint –

that is, to open up the

sepia floodgates for the

darker parts of the origi-

nal and leave them shut

in the lighter areas? If a

pixel in the original layer is black, the

mask at this point has to be white, and

the sepia tint will be applied 100 percent.

The opposite also applies: If the original

layer is white, the mask is black, and the

sepia layer is not applied to the original

layer at all.

For grayscales, the mask is somewhere

in between. Black-to-white and white-to-

black? The solution should now be obvi-

Perl: Photos Effects

77ISSUE 102MAY 2009

ous: The mask simply needs to invert

the grayscale image of the original layer!

For this, edit_copy() in line 82 copies

the image in the original layer into

GIMP’s internal cut-and-paste buffer,

and line 85 drops this content on top of

the previously created $layer_mask. This

provides a reference to a floating section,

which is inverted by line 90 and finally

anchored in the layer mask by line 91.

To do this in GIMP by hand, you

would click the original layer in the layer

dialog, then change to the image win-

dow, press Select-All, then press Ctrl+C

to copy the image content to the cut-

paste buffer. This procedure is followed

by a mouse click on the layer mask in

the sepia layer (the second thumbnail in

the layer line) and a return to the image

window, where you need to select Paste

to insert. This creates a floating section

in the Layers dialog, which is fixed in

place by clicking the anchor at the bot-

tom. Finally, you would need to invert

the colors in the layer mask by selecting

Colors | Invert; after doing so, the Layers

dialog would look similar to Figure 8.

The final step is to flatten() (i.e. merge

the two layers to create a single active

one). This changes the order of the ac-

tive layers and the script thus needs to

call the get_active_layer() method (line

97) to obtain a reference to the remain-

ing layer.

The results, with a nice coating of

sepia, are shown in Figure 9, and for a

more dramatic effect, as shown in Figure

10, the curves_spline function darkens

the dark tones slightly, without touching

the lighter ones. The six coordinates

passed in to the function in line 102 de-

fine a graph, as shown in Figure 11. It

manipulates the image as if the user had

run GIMP’s Curves against it. A linear

curve in the Curves dialog leaves the

image unchanged, whereas data points

below the straight line darken all image

pixels carrying that brightness value.

The gimp_file_save() function saves

the results in a new file, which line 104

creates by appending -sepia to the origi-

nal name.

To install the required Perl modules,

Gimp and Gimp::Fu, on Ubuntu Hardy

Heron, enter:

sudo apt-get install

libgimp-perl

Older Ubuntu versions have a bug, but

in a previous article [5], I told you how

to work around it. The Log4perl module

(available from CPAN or in the liblog-

log4perl-perl package with your Ubuntu

distribution) shows the progress of the

image conversion at the command line.

If you prefer a less verbose script, you

can comment out the call to easy_init()

in line 10 of the script.

The documentation for GIMP’s Perl in-

terface isn’t very detailed, but GIMP has

an excellent procedure browser (Figure

12) that you can call via Xtns | Procedure

Browser.

After doing so, type the part of the

function name that you have already

guessed, such as “load,” “save,” or

“layer,” and the procedure browser will

return a list of available API functions

with precisely documented parameters

and return values. It is thus typically

possible to find an API function for any

action in GIMP’s point-and-click user in-

terface, empowering the user to auto-

mate steps in scripts instead of repeating

them by hand. p

Perl: Photos Effects

78 ISSUE 102 MAY 2009

[1] Listings for this article: ftp:// ftp.

 linux-magazine. com/ pub/ listings/

 magazine/ 102/ Perl

[2] “Luminosity Masks and Sepia Ton-

ing” by Doug Nelson, RetouchPRO,

May 2001, http:// www. retouchpro.

 com/ tutorials/ lum-mask-sepia. html

[3] Sepia: http:// en. wikipedia. org/ wiki/

 Sepia_tone

[4] “Sepia Toning” by Eric R. Jeschke,

2002, http:// www. gimp. org/ tutorials/

 Sepia_Toning

[5] “Color Play” by Michael Schilli,

Linux Magazine, September 2008,

http:// www. linux-magazine. com/

 issues/ 2008/ 94/ color_play

[6] Bunks, Carey. Grokking the GIMP.

New Riders Publishing, 2000

INFO

Michael Schilli works

as a software engi-

neer with Yahoo! in

Sunnyvale, California.

He is the author of

Goto Perl 5 (German)

and Perl Power (Eng-

lish), both published by Addison-Wes-

ley, and he can be contacted at

mschilli@perlmeister.com. Michael’s

homepage is at http:// perlmeister.

 com.

T
H

E
 A

U
T

H
O

R

