
If you don’t spend all day playing
video games, you will be quite
happy without the latest and greatest

CPU, and you can save money on hard-
ware while saving power and reducing
your personal CO² footprint.

But what happens if a Perl program
does not perform as well as you would
like? As a first step, you might be able to
accelerate the program with very little
effort by optimizing the code at neural-
gic points.

In most cases, just one or two targeted
improvements will help you achieve 90
percent of the total optimization poten-
tial. The remaining 10 percent are more
likely to involve wide-ranging, architec-
tural changes that take 10 times as long
to implement and make the resulting
program so difficult to maintain that
more experienced developers are likely
to turn down the option.

Profilers are programs that discover
bottlenecks, or hotspots. They show you

where the program spends most of its
time and help to optimize these crucial
sections in a targeted way.

Perl has many tools of this kind. For
example, if a module uses the Log4perl
logging framework, it is simple to dis-
play the number of milliseconds (msec)
that elapse along with the log messages,
thus creating a timescale.

Finding Bottlenecks
The simple test script amzntest (Listing
1) uses the CPAN Net::Amazon module
to retrieve book details from the Amazon
Web API (assuming you enter a valid
token, which you can get from Amazon
Web Services [2]).

A request takes about a second, but
what does the script use this time for –
picking up the data or the analyzing the
XML response? Adding

 use Log::Log4perl;

 Log::Log4perl‑>init("timer.l4p");

Instead of souped up CPUs, simple programming tricks are often all it

takes to speed up a program. Profilers can discover bottlenecks that

need more TLC from the developer. By Michael Schilli

Profilers identify bottlenecks in Perl programs

Run-Time Speed

D
o
m

in
ic Z

ieg
ler, Foto

lia

Michael Schilli works
as a software engi-
neer with Yahoo! in
Sunnyvale, California.
He is the author of
Goto Perl 5 (German)
and Perl Power
 (English), both published by
Addison-Wesley, and he can be con-
tacted at mschilli@perlmeister.com.
Michael’s homepage is at
http:// perlmeister. com.

T
H

E
 A

U
T

H
O

R

ProgrammIngPerl: Speed Bumps

79iSSUe 99FEBRUARY 2009

to the script header enables the Log4perl
statements embedded in Net::Amazon
by loading the timer.l4p configuration
file. This outputs the date (%d) and the
number of milliseconds since the pro-
gram started (%r) for each message it
logs. The logging level is set to DEBUG
and is thus fairly verbose.

To cut down on lengthy log messages,
the configuration file in Listing 2 uses

the abbreviation %S to define a so-called
Custom Cspec. This appears in the lay-
out, instead of the more typical %m (for
the log message).

The associated Perl subroutine returns
a shorter, 25-character message to the
screen appender. The layout closes with
a platform-dependent newline character
defined by %n.

Quick Fix
Figure 1 shows that Net::Amazon sends
a web request to Amazon 79msec after
the program launches; however, the
XML parser does not start working until
739msec have elapsed. Thus, the web re-

quest takes 75 percent of the 800msec
required by the script.

As you will agree, it makes sense to
use a web cache for frequently retrieved
ASIN numbers, and Net::Amazon en-
ables this if we ask it to (see Listing 3).
This really does reduce the script run
time, which drops to 180msec for repeti-
tions (see Figure 2) with the use of
File::Cache as a persistent cache.

Quick results
Now you might argue that tricks of this
kind aren’t always going to help, but the
decisive issue here is that five lines of
code and a minute spent thinking about

Figure 3: The 25,000 lines of output from SmallProf reveals that waiting for the Amazon

server takes longest.

Figure 2: The use of a web cache removes the need to issue a web

request in case of repetitions, thus reducing the run time by 75

percent.

Figure 1: Log4perl outputs the time of day and the number of

 milliseconds (79msec) that have elapsed since the program was

launched.

1 log4perl.logger = DEBUG, App

2 log4perl.appender.App = Log::Log4perl::Appender::Screen

3 log4perl.appender.App.layout = PatternLayout

4 log4perl.appender.App.layout.ConversionPattern = %d %r %S%n

5 log4perl.PatternLayout.cspec.S = sub { substr($_[1], 0, 25) }

Listing 2: timer.l4p

01 #!/usr/bin/perl

02 use warnings;

03 use strict;

04 use Net::Amazon;

05 use Net::Amazon::Request::ASIN;

06

07 my $asin = "0132396556";

08

09 my $ua = Net::Amazon‑>new(

10 token => 'XXXXXXXXXXXXXXX',

11);

12

13 my $req = Net::Amazon::Request::ASI

N‑>new(

14 asin => $asin,

15);

16

17 my $resp = $ua‑>request($req);

18

19 if($resp‑>is_success()) {

20 print $resp‑>as_string(), "\n";

21 } else {

22 print "Error: ",

23 $resp‑>message(), "\n";

24 }

Listing 1: amzntest

Perl: Speed BumpsProgrammIng

80 iSSUe 99 FEBRUARY 2009

options achieved a speed boost of 400
percent.

SmallProf Line Profiler
Of course, some modules do not have
very sophisticated logging mechanisms.
Thankfully, Perl has a number of profil-
ers that measure the amount of time
each line of source code uses.

Table 1 shows the major CPAN profil-
ers for various tasks in ascending release
order.

The CPAN Devel::SmallProf line pro-
filer autonomously measures run times
and formats the data for analysis. If you
launch the script you want to test via
perl ‑d:SmallProf ./amzn, the profiler
 creates a smallprof.out file that lists the
time used by each line in each module
used.

In the case of a fairly complex action
like a web request and ensuing XML
analysis of the returned data, the resul-
tant file can be enormous – in this case,

it weighed in at no fewer than 25,792
lines.

Discovering the worst time hogs is not
an easy task, but the shell command

sort ‑k 2,2 smallprof.out | less

sorts the file numerically on the second
field from the left. This field contains the
wall clock time in seconds used by a line
of source code, which is the time actu-
ally used whether the task gave the CPU
something to do or just left it idle, wait-
ing for external events, such as incoming
network packages, for example. In addi-
tion, the third field contains the CPU
seconds, which is the computational
time actually used.

If you scroll down to line 17,104 in
smallprof.out, as shown in Figure 3, you
will see that the line responsible for the
wait issues a select command. The can_
read function in the LWP::Protocol::http::
SocketMethods module is responsible for
this.

nYTProf
The CPAN module Devel::NYTProf is a
relatively new development [3]. The

strange-sounding name came about be-
cause the module was developed for the
New York Times and based on the
Devel::FastProf codebase. Their IT de-
partment decided to release the source
code.

This excellent profiler is maintained
by DBI inventor Tim Bunce [4] today.
Bunce presented his work to the Perl
community at OSCON 2008 [5]. Al-
though I was in the audience, I couldn’t
concentrate on his talk because I was up
next with my Log4perl talk.

After the CPAN shell-assisted installa-
tion (perl ‑MCPAN ‑e'install Devel::
NYTProf'), you type perl ‑d:NYTProf
amzn to launch the profiler on the
script. To convert its binary logfile nyt‑
prof.out to professionally formatted
HTML, use the nytprofhtml script in-
cluded with the package.

Firing up a browser and pointing it to
the index.html file in the newly created
nytprof directory (URL file:///...nytprof/
index.html) reveals what has been going
on. The table in Figure 4 lists the
hotspots. It shows the number of calls,
the number of places (P) they have been
issued, the files (F) they are located in,
and the time spent executing each func-
tion. The tool differentiates between “ex-
clusive time” and “inclusive time,” the
former referring to the time spent exclu-

Figure 5: The select command in the LWP code waits for a response from Amazon and is thus

responsible for a major part of the program run time.

Figure 4: The 15 functions that waste the most time.

Name year

Subroutine-level Profilers
Devel::DProf 1995

Devel::AutoProfiler 2002

Devel::Profiler 2002

Devel::Profile 2003

Devel::DProfLB 2006

Devel::WxProf 2008

Statement-level Profilers
Devel::SmallProf 1997

Devel::FastProf 2005

Devel::NYTProf 2008

Devel::Profit 2008

Table 1: Perl Profilers

01 use Cache::File;

02 my $cache = Cache::File‑>new(

03 cache_root => '/tmp/mycache',

04 default_expires => '30 min',

05);

06

07 my $ua = Net::Amazon‑>new(

08 token =>

'0AQN5ZBDW6NXV9M60N82',

09 cache => $cache,

10);

Listing 3: Web Cache

ProgrammIngPerl: Speed Bumps

81iSSUe 99FEBRUARY 2009

sively in the function’s code and the lat-
ter referring to the total time, including
the subfunctions called by the function.

Single-Click analysis
The HTML links the function names
with HTML pages providing details on
the function code – a very practical idea
that lets the user flip back and forth and
greatly facilitates the analysis. Figure 5,
for example, shows details that were
very difficult to obtain with SmallProf;
that is, the select() command in the can_
read() function in an LWP module is
causing the delays. On an open network
socket, it waits for the first signs of the
response returned by Amazon.

NYTProf supports three different re-
porting modes for displaying the time
spent by the source code: line mode (one
time value per line), block mode (one
time value per block of Perl), and sub
mode (one time value per function).

Clicking toggles the performance de-
tective through the different display
variants.

The module-level view of the profiler
in Figure 6 also reveals some interesting
facts. The XML analysis of the Amazon
web response took 9,963 lines of code
and 400 calls to the collapse() function
XML::Simple.

Because it ran at full speed, the whole
kit and caboodle took just 35msec, but
this just goes to show how complex it is
to parse XML.

not Without Side Effects
Just like any other profiler,
Devel::NYTProf also involves some over-
head that can completely falsify the
measured results in some cases. The
profiler’s activities are particularly inva-
sive if a program is not waiting for exter-
nal events, such as network traffic or
disk access, which are magnitudes of

scale slower.
For a program running at

full CPU speed, the run time
can be 10 times longer if you
enable the profiler.

Figure 7 shows the effect the
NYT profiler has on the short
l4ptest test program (Listing
4). The program configures
Log4perl for the $INFO logging
priority and then issues
$DEBUG messages, which
should be suppressed because

of their lower priority. Log4perl has opti-
mized this case; after all, a disabled log-
ging system shouldn’t have any measur-
able effect.

The script running without the profiler
achieves around 100,000 calls in about
100msec; the script run time is about 10
times longer with NYTProf enabled.

This by no means detracts from the
quality of the profiler, but it is important
to take this into consideration when
measuring script run time and interpret-
ing the results.

The module also is quite at home in
the Apache server’s mod_perl. Adding
PerlModule Devel::NYTProf::Apache to
the configuration loads the module and
tells it to append profile data to the
/tmp/nytprof.$$.out file for incoming
 requests, where $$ represents the PID
for the Apache process handling the
 request.

Calling nytprofhtml again creates a
collection of web pages for in-depth
analysis of the web application’s perfor-
mance that could very well point you to
critical code sections that need improve-
ment. n

[1] Listings for this article:
http://www.linux-magazine.com/
resources/article_code

[2] Amazon Web Services (developer
token application):
http:// amazon. com/ soap

[3] Devel::NYTProf:
http://search.cpan.org/dist/Devel-
NYTProf/

[4] Tim Bunce blog “NYTProf v2 – the
background story,”
http:// blog. timbunce. org/ 2008/ 07/ 16/
nytprof-v2-the-background-story/

[5] Tim Bunce at OSCON 2008:
http://en.oreilly.com/oscon2008/pub-
lic/schedule/speaker/6816

INFO

Figure 7: NYTProf can slow down fast programs –

 considerably in some cases.

 #!/usr/local/bin/perl ‑w

use strict;

use Log::Log4perl qw(:easy);

Log::Log4perl‑>easy_init($INFO);

for(1..100_000) {

 DEBUG "waah!";

}

Listing 4: l4ptest

Figure 6: The NYTProf shows how much time the code spends in each module and how many

statements were processed.

Perl: Speed BumpsProgrammIng

82 iSSUe 99 FEBRUARY 2009

