
ast month, I wrote about using

reference cards to correct the

white balance in digital photos by

taking a test snapshot (see Figure 1) [2].

The black, white, and gray plastic cards,

which are available from any good pho-

tography equipment dealer, should not

generate any color values in a digital

image. This provides three calibration

points for low, medium, and high light

intensity, which the GIMP photo editing

tool can then reference to correct your

snapshots.

How can a simple Perl script find out

which pixel values the three cards cre-

ate, even though their position in the

image is not known, without using artifi-

cial intelligence?

If the photographer manages to spread

the cards in the center of the image as

shown in Figure 1, the script can follow

an imaginary horizontal line and identify

the cards on the basis of pixel values

along the x axis.

The light intensity measured along

this line remains constant for a fairly

substantial distance, as long as the line

lies within one reference card.

Once the line touches the background,

the pixel values will start to fluctuate

significantly.

If you have grown tired of manually correcting color-casted images (as described in last month’s Perl

column), you might appreciate a script that automates this procedure. BY MICHAEL SCHILLI

Perl: Automating Color Correction

72 ISSUE 95 OCTOBER 2008

072-076_perl.indd 72 13.08.2008 15:49:02 Uhr

Listing 1, graphdraw, uses the CPAN

Imager module to create the graphs

shown in Figure 2.

The graphs represent the red, green,

and blue components of the color values

along the horizontal line drawn in Figure

1 on a coordinate system in which the x

axis matches the x coordinates in the

image and the y value represents the

color component value with a range of 0

through 255.

The CPAN Imager module’s read()

(line 12) is a multi-talented beast that

can identify, read, and convert any pop-

ular image format to its own internal

 Imager format for editing.

If something goes wrong, the Imager

methods return false values. For more

details about an error, cautious program-

mers tend to call the errstr() method to

return a cleartext description of the

issue. The getpixel() method (line 30)

examines the RGB values of a pixel in

the image at a location defined by its x

and y coordinates and returns an

Imager::Color object, which contains the

pixel’s RGB values.

A call to rgba() (line 35) returns these

values along with the value for the alpha

channel. Here, you are just interested in

the first three RGB values.

Perl: Automating Color Correction

73ISSUE 95OCTOBER 2008

01 #!/usr/local/bin/perl -w

02 use strict;

03 use Imager;

04 use Imager::Plot;

05 use Log::Log4perl;

06

 07 my ($file) = @ARGV;

08 die „No file given“

09 unless defined $file;

10

 11 my $img = Imager->new();

12 $img->read(file => $file)

13 or die $img->errstr();

14

 15 $img->filter(

16 type => „gaussian“,

17 stddev => 10

18) or die $img->errstr;

19

 20 my $y = int(

21 $img->getheight() / 2);

22 my $width = $img->getwidth();

23

 24 my $data = {};

25

 26 for my $x (0 .. $width - 1)

27 {

28 push @{ $data->{x} }, $x;

29

 30 my $color = $img->getpixel(

31 x => $x,

32 y => $y

33);

34 my @components =

35 $color->rgba();

36 for my $color_name (

37 qw(red green blue))

38 {

39 push @{ $data

40 ->{$color_name} },

41 shift @components;

42 }

43 }

44

 45 my $plot = Imager::Plot->new(

46 Width => 550,

47 Height => 350,

48 GlobalFont =>

49 ‚/usr/share/fonts/truetype/

msttcorefonts/Verdana.ttf‘

50);

51

 52 for my $color_name (

53 qw(red green blue))

54 {

55 $plot->AddDataSet(

56 X => $data->{x},

57 Y =>

58 $data->{$color_name},

59 style => {

60 marker => {

61 size => 2,

62 symbol => ‚circle‘,

63 color =>

64 Imager::Color->new(

65 $color_name),

Listing 1: graphdraw (continued on p74)

072-076_perl.indd 73 13.08.2008 15:49:04 Uhr

The script calls shift in line 41 to

 extract them one by one.

The Imager::Plot module represents bor-

ing numbers as graphs in an attractive

coordinate system without too much

hassle with respect to scaling, axis label-

ing, or graphical layout, and it returns

image files in all popular formats, allow-

ing the user to check them later with an

image viewer or web browser. The new()

constructor (line 45) accepts the dimen-

sions for the resulting image and the

path to an installed True Type font,

which it then uses for axis labeling.

The script collects the required coordi-

nates in a hash of hashes, to which

$data points. It stores all the x coordi-

nates in $data->{x} and all red values

in $data->{red}; the green and blue val-

ues are stored in the same manner. The

AddDataSet() method (line 55) then

adds the data separately for each of the

three graphs, each of which are drawn

in a different color.

On completion, a new Imager object is

created in line 71; later, it will create the

resulting graphics file. Before this hap-

pens, the box() method colors the image

background white, then Render() draws

the coordinate system, the labels, and

the three graphs in one fell swoop.

Finally, the write() method saves the

output file on disk in PNG format.

Before a script can reliably identify the

three areas at the center of the image,

you need to make some preparations.

Figure 2 clearly shows how much the

graph fluctuates, and this is obviously

going to make it difficult to identify the

somewhat flatter areas. Thus, the card-

find detection script (Listing 2) needs to

run a blur filter that uses the “Gaussian

Blur” method with a radius of 10 to de-

focus the image (lines 15ff.).

In an out-of-focus image (see Figure

3), the color transitions between individ-

ual pixels are less abrupt. Instead of

jumping directly from a white to black

pixel, an out-of-focus image will show a

transition with several gray scale values.

The graph shown in Figure 4, which rep-

resents the pixel values on the same hor-

izontal line, is far smoother as a result of

this, and also simplifies the task of iden-

tifying the three areas to be identified.

In these card areas, the curve is fairly

flat over a length of hundreds of pixels.

If you remember your math from school,

you might recall that the first derivative

of a graph like this at flat spots is con-

stant and about zero, whereas the values

will be far higher and fluctuate signifi-

cantly everywhere else.

Figure 5 shows the first derivative of

intensity values, which are calculated by

adding the pixel values for the red,

green, and blue channels. The recorded

values are indicative of the fluctuation of

the original graph and drop to zero over

quite considerable distances.

The cards, with their homogeneous

gray scales, occupy these positions in the

Perl: Automating Color Correction

74 ISSUE 95 OCTOBER 2008

66 }

67 }

68);

69 }

70

 71 my $graph = Imager->new(

72 xsize => 600,

73 ysize => 400

74);

75

 76 $graph->box(

77 filled => 1,

78 color => ‚white‘

79);

80

 81 # Add text

82 $plot->{‚Ylabel‘} =

83 ‚RGB Values‘;

84 $plot->{‚Xlabel‘} =

85 ‚X-Pixel‘;

86 $plot->{‚Title‘} =

87 ‚RGB-Distribution‘;

88

 89 $plot->Render(

90 Image => $graph,

91 Xoff => 40,

92 Yoff => 370

93);

94

 95 $graph->write(

96 file => „graph.png“)

97 or die $graph->errstr();

Listing 1: graphdraw (continued from p73)

072-076_perl.indd 74 13.08.2008 15:49:05 Uhr

original image. Thus, the script just

needs to follow this graph, create a ring

buffer of about 50 investigated values,

and alert when the buffer average drops

to a value close to zero. When it does so,

it has located a card.

When the buffer values start to fluctuate

again, the script has left the card area

and returns to the state “search for the

next homogeneous location.” The script

should be able to find all three regions

you are looking for and return the RGB

values it finds there in YAML format.

This lets the picfix script I discussed

in last month’s Perl column adjust the

white balance of other images with the

same light conditions.

The photographer still needs to repeat

the reference card shot whenever the

scene changes. All following photos of

the same scene

can then be cor-

rected by GIMP

and the picfix

script.

To make sure

this approach

works even if the

snapshot happens

to have a fairly

homogeneous

background, lines

66 through 68 not

only check to see

whether the mean

value in the buffer

is less than 3, but

also whether the algorithm is in the mid-

dle third of the image, ignoring the left

and right thirds.

The script uses normal Perl arrays as

ring buffers and uses push() to append

new values before checking to see

whether the array exceeds the maximum

length of the buffer. If this is the case, it

deletes the first array element by calling

shift(). This shortens the array by one

element, and the second element moves

up to the first spot.

To calculate the first derivative of the

fairly complex pixel function, you can

Perl: Automating Color Correction

75ISSUE 95OCTOBER 2008

001 #!/usr/local/bin/perl -w

002 use strict;

003 use Imager;

004 use YAML qw(Dump);

005

 006 my ($file) = @ARGV;

007 die „No file given“

008 unless defined $file;

009

 010 my $img = Imager->new();

011 $img->read(file => $file)

012 or die „Can‘t read $file“;

013

 014 # Blur

015 $img->filter(

016 type => „gaussian“,

017 stddev => 10

018) or die $img->errstr;

019

 020 my $y = int(

021 $img->getheight() / 2);

022 my $width = $img->getwidth();

023

 024 my @intens_ring = ();

025 my @diff_ring = ();

026 my $found = 0;

027 my @ctl_points = ();

028

 029 for my $x (0 .. $width - 1)

030 {

031 my $color = $img->getpixel(

032 x => $x,

033 y => $y

034);

035 my @components =

036 $color->rgba();

037

 038 # Save current intensity

039 # in ring buffer

040 my $intens =

041 @components[0, 1, 2];

042 push @intens_ring, $intens;

043 shift @intens_ring

044 if @intens_ring > 50;

045

 046 # Store slope between

047 # x and x-50

048 push @diff_ring,

049 abs($intens -

050 $intens_ring[0]);

051 shift @diff_ring

052 if @diff_ring > 50;

053

 054 if ($found) {

055

 056 # Inside flat region

057 if (avg(\@diff_ring) >

058 10)

059 {

060 $found = 0;

061 }

062 }

063 else {

064

 065 # Outside flat region

066 if ($x > $width / 3

067 and $x < 2 / 3 * $width

068 and avg(\@diff_ring)

069 < 3)

070 {

071 $found = 1;

072 push @ctl_points,

073 [@components[0, 1,

074 2]];

075 }

Listing 2: cardfind (continued on p76)

072-076_perl.indd 75 13.08.2008 15:49:06 Uhr

use a simplified nu-

meric approach.

The ring buffer, @

intens_ring, stores

the intensity values

of the last 50 pixels,

which were created

by adding the red,

green, and blue val-

ues at the processed

x coordinates.

To extract the

three values from

the four-element list

returned by the

rgba() method (line

36), the script relies

on the array slice

technique @compo-

nents[0,1,2] (line

41). The value of the

first derivate – that is, the slope of the

graph at this point – is then approxi-

mated as the difference between the first

and last elements in the ring buffer at

constant distance x. Positive or negative

slopes are of no interest, so abs() con-

verts them to positive values if needed.

To find out whether the algorithm is

currently in one of the flat parts of the

graph that are being investi-

gated, or in a more mountain-

ous region, the script sets up a

second ring buffer, @diff_ring,

which contains the last 50 val-

ues determined for the first de-

rivate of the graph (lines 51,

52). The avg() function defined

in line 107ff. calculates the

mean value of 50 intensity val-

ues. If the algorithm is cur-

rently in a peaky region, a

mean value below a threshold

of 3 is all you need to identify a

flat part.

Once the script hits a flat

area, it takes a mean increase of

more than 10 to convince the

state machine that it is back in

the mountains.

Each time the script identifies

a flat area, line 72 stores the RGB values

of the first pixel found in this area in the

@ctl_points array. Because you are only

interested in three flat spots; the last in-

struction in line 101 scraps any others.

Finally, the Dump() function from the

YAML module from CPAN outputs the

results (Figure 6) in the form of a YAML

file, sample.yml.

Storing the results and passing them

in to last month’s picfix script as -c sam-

ple.yml lets you correct the color casting

in the image with the cards, and any

number of images you took with the

same lighting – but don’t forget to hold

the cards in the middle of the photo to

make sure that the simple algorithm

finds them. To find the cards otherwise,

you would need a far more sophisticated

algorithm.

On the other hand, Perl, with its trea-

sure of modules on CPAN, gives you

ample fodder for your experiments. p

Perl: Automating Color Correction

76 ISSUE 95 OCTOBER 2008

076 }

077 }

078

 079 my $out = {};

080 my @labels =

081 qw(low medium high);

082

 083 # Sort by intensity

084 for my $ctl_point (

085 sort {

086 $a->[0] +

087 $a->[1] +

088 $a->[2] <=> $b->[0] +

089 $b->[1] +

090 $b->[2]

091 } @ctl_points

092)

093 {

094 my $label = shift @labels;

095 $out->{$label}->{red} =

096 $ctl_point->[0];

097 $out->{$label}->{green} =

098 $ctl_point->[1];

099 $out->{$label}->{blue} =

100 $ctl_point->[2];

101 last unless @labels;

102 }

103

 104 print Dump($out);

105

 106 #############################

107 sub avg {

108 #############################

109 my ($arr) = @_;

110

 111 my $sum = 0;

112 $sum += $_ for @$arr;

113 return $sum / @$arr;

114 }

Listing 2: cardfind (continued from p75)

[1] Listings for this article:

http:// www. linux-magazine. com/

 resources/ article_code

[2] “Color Play” by Michael Schilli,

Linux Magazine, September 2008:

http:// www. linux-magazine. com/

 issues/ 2008/ 94/ color_play

INFOMichael Schilli works

as a Software Devel-

oper at Yahoo!,

Sunnyvale, Cali for -

nia. He wrote “Perl

Power” for Addison-

Wesley and can be

 contacted at mschilli@perlmeister.

com. His homepage is at

http:// perlmeister. com.

T
H

E
 A

U
T

H
O

R

072-076_perl.indd 76 13.08.2008 15:49:07 Uhr

