
efore posting snapshots I’ve

taken with my digital camera to

the web, I used to go through the

same old steps with GIMP. First, I’d re-

duce the image size to a width of 1,000

pixels because the image size my Nikon

D70 gives me is just too much for the

web and uploading the images takes too

long. Also, to improve the contrast, cor-

rect any color casting, and make images

tack-sharp with GIMP’s Sharpen func-

tion, I typically select a value of 20.

As you might know, GIMP has a con-

venient scripting interface that lets users

automate recurring tasks, and you can

even run it at the command line without

launching the GUI. GIMP developers

have made some fairly significant

changes to the whole API and nothing

works the way it used to. Fortunately,

GIMP documents the functions com-

pletely and thoroughly in the Xtns |

 Procedure Browser menu.

The standard interface is implemented

in the rocket scientist’s favorite program-

ming language, Scheme.

Thank goodness there is a Perl module.

I needed a couple of tricks to install it on

Ubuntu 7.10, and I’ll explain the steps

later. After the install, you can run the

picfix script (Listing 1) at the command

line by typing picfix file.jpg. Under the

hood, the script calls GIMP (without the

GUI) and then invokes register() to regis-

ter the picfix() function.

Strangely, the GIMP interface insists

on scripts that run at the command line,

creating a menu entry, and picfix has no

option but to comply. Line 49 of the

script calls the main() function that

branches off to GIMP and returns after

completing its chores, and exit makes

sure that the script gives the return code

from main() before quitting.

Figure 1 shows the original image, a

picture taken from my balcony in San

Francisco with the early evening sun

lighting up the city nicely. Despite this,

I still wasn’t happy with the colors in the

original.

Running picfix gave me the results you

can see in Figure 2. The contrast is

vastly improved and the colors are far

more realistic.

The picfix() function defined in lines

52ff., which GIMP executes as a call-

back, runs the gimp_file_load() function

that loads the digital image from a given

file on disk. A call to image_scale() (line

134) scales the image to a width of 1,000

pixels.

The gimp_levels_stretch() function

(line 74) then simulates the Auto button

in the GIMP Levels dialog and maxi-

mizes the contrast by distributing the

In many cases, whole series of digital images need the same kind of modifications, which forces the photo-

grapher to repeat the same steps time and time again in GIMP. Have you ever considered retouching in Perl?

BY MICHAEL SCHILLI

Perl: Retouching Photos

70 ISSUE 94 SEPTEMBER 2008

color values used in the image across

the whole of the available bandwidth.

The plug_in_sharpen() method (line

90) with a parameter of 20 then im-

proves the focus, then gimp_file_save()

(line 97) saves the file as file-1.jpg using

the original format. Whether the image

is a JPEG or PNG makes no difference;

internally, the load/ save methods hand

control over to the GIMP routines for the

format in question.

Loading the supporting modules by

calling use Gimp qw(:auto) and use

Gimp::Fu has the practical side effect of

loading all of GIMP’s functions into the

script’s namespace. Programmers will

be happy to hear that the :auto tag also

includes GIMP constants, such as RUN_

NONINTERACTIVE.

Image rescaling defaults to a width of

1,000 pixels; however, the -s (size) com-

mand-line option supports arbitrary val-

ues. A command line of picfix -s 500 file.

jpg reduces the maximum image width

to 500 pixels, for example, with the max-

imum size relating to the width in land-

scape images, but to the height in por-

trait format. The scale_image_down()

subroutine in line 109ff. provides the If/

Else logic for this.

If you prefer to check the results of

your scripted actions on the image, you

can set the -x (for X Window) option to

view the image in the viewer set as a

 default in line 13 (in this case, Eye of

Gnome, eog).

To disable the Autolevel function,

which does not always return satisfac-

tory results, set the -l 0 option.

If you have a photo that is too green, too

red, or too blue, you can assume that

something is wrong with the color bal-

ance. A white object in a scene you pho-

tograph really should be white. The

Perl: Retouching Photos

71ISSUE 94SEPTEMBER 2008

001 #!/usr/bin/perl

002 # Mike Schilli, 2008

003 # (m@perlmeister.com)

004 use warnings;

005 use strict;

006

 007 use Gimp qw(:auto);

008 use Gimp::Fu;

009 use ColorCast;

010 use Getopt::Std;

011 use Log::Log4perl qw(:easy);

012

 013 my $viewer = "eog";

014

 015 Log::Log4perl->easy_init(

016 $DEBUG);

017

 018 getopts("xl:c:a:s:",

019 \my %opts);

020

 021 $opts{a} ||=

022 "green"; # color adjust

023 $opts{s} ||= "1000"; # size

024 $opts{l} ||= 1; # autolevel

025

 026 DEBUG "Starting up";

027

 028 my $menu =

029 "<Toolbox>/Xtns/Perl-Fu/

Picfix";

030

 031 my $file = $ARGV[0];

032 die "No file"

033 unless defined $file;

034

 035 register(

036 "perl_fu_picfix", # Name

037 "Fix Colors and More"

038 , # Explain

039 "", # Help

040 "", # Author

041 "", # Copyright

042 "", # Date

043 $menu, # Menu

044 "*", # Images accepted

045 [undef], # No parameters

046 \&picfix # Function

047);

048

 049 exit main();

050

 051 #############################

052 sub picfix {

053 #############################

054

 055 my $img =

056 gimp_file_load(

057 RUN_NONINTERACTIVE, $file,

058 $file);

059

Listing 1: picfix (continued on p72)

same principle applies to gray or black

objects. However, if you have not ad-

justed your camera’s white balance –

something professional photographers

always do – you could experience unnat-

ural-looking colors. Later, you can cor-

rect color casting in the digital image

by a method described in Grokking the

GIMP [2]. Although the JPEG format

used by many low-budget cameras re-

stricts your options here, you can typi-

cally achieve fairly satisfactory results.

One problem is that many photos

simply do not contain pure white,

black, or gray elements; however,

photographic equipment retailers

have plastic cards that can help

you. Simply place the cards some-

where in a test shot, and then use

the measured values to compensate

any further shots you take of the

same scene.

Of course, if the lighting changes

– if, for example, the sun comes

out from behind a cloud – you will

need to take another test shot with

the cards before you continue.

In Figure 3, I used the GIMP’s

Color Picker tool to measure the

color values of the gray card. The

results were Red: 122, Green: 127,

and Blue: 123. For a perfect picture, all

three color channels should have identi-

cal values. The same thing applied to the

white and black cards: the values I got

here were 227/ 235/ 228 and 16/ 10/ 17,

respectively.

Perl: Retouching Photos

72 ISSUE 94 SEPTEMBER 2008

 060 die "Can't load $file"

061 unless $img;

062

 063 my $layer =

064 image_get_active_layer(

065 $img);

066

 067 scale_image_down($img,

068 $opts{s});

069

 070 $layer =

071 $img->get_active_layer();

072 if ($opts{l}) {

073 DEBUG "Autolevel [$file]";

074 gimp_levels_stretch(

075 $layer);

076 }

077

 078 if ($opts{c}) {

079 my $colorcast =

080 ColorCast->new(

081 yml_file => $opts{c},

082 drawable => $layer,

083);

084 $colorcast->load();

085 $colorcast->adjust_to(

086 $opts{a});

087 }

088

 089 DEBUG "Sharpening $file";

090 $img->plug_in_sharpen(

091 $layer, 20);

092

 093 $file =~ s/\./-1./g;

094 $file =~ s/\.nef$/.png/g;

095

 096 DEBUG "Saving $file";

097 gimp_file_save(

098 RUN_NONINTERACTIVE,

099 $img, $layer,

100 $file, $file

101);

102

 103 system("$viewer $file")

104 if $opts{x};

105 return $img;

106 }

107

 108 #############################

109 sub scale_image_down {

110 #############################

111 my ($img, $size) = @_;

112

 113 my $w = $img->image_width();

114 my $h =

115 $img->image_height();

116

 117 if ($w >= $h) {

118 if ($w > $size) {

119 $h = int($h * $size / $w);

120 $w = $size;

121 } else {

122 return 1;

123 }

124 } else {

125 if ($h > $size) {

126 $w = int($w * $size / $h);

127 $h = $size;

128 } else {

129 return 1;

130 }

131 }

132

 133 DEBUG "Resizing to $w x $h";

134 $img->image_scale($w, $h);

135 }

Listing 1: picfix (continued from p71)

The colorcast.yml file (Figure 4) shows

the values GIMP returned in YAML for-

mat. The script parses these values from

a file whose name you pass in at the

command line, as in picfix -c colorcast.

yml file.jpg. This lets the script adjust

any number of images of the same

scene. To do so, it has to transform all

the colors used in the image in such a

way that it removes color components

in those sections of the image that are

actually colorless.

To allow this to happen, I needed to

define a transition function with a graph

that covers the known measuring points,

and performs spline-style interpolations

for all other values. GIMP’s Curves dia-

log from the Tools | Color Tools menu

supports this. All you must do is set the

color that needs adjustment in the dia-

log’s selection box at the top and then

make a dent in the graph, which is ini-

tially straight, so that the line touches

the control values that you determined.

If you assume the gray card gives val-

ues of Red: 122, Green: 127, and Blue:

123, to adjust the image, just set the val-

ues for the red and blue channels to the

same value as green, 127, which gives

you a pure gray.

To do so, open the red channel in the

Curves dialog and drag the straight line

at the 122/122 point to 122/127, which

makes a slight dent into the graph as the

curve auto-adjusts. While you are drag-

ging the line, GIMP shows you the cur-

rent coordinates at the top left-hand

side. Then do the same for the blue

channel, dragging 123/123 to 123/127.

The red and blue channels have slightly

bumpy curves when you are done, as

you can see in Figure 5.

Now repeat the process for the black

and white cards; This gives you a total of

three control points in the red and blue

channels, all of which adjust the color

balance.

Of course, you can script the whole

process. Listing 2, ColorCast.pm, shows

that its constructor expects two values:

yml_file, the YAML file with the mea-

sured values, and drawable, the GIMP

layer in which to perform the color

transformation.

Perl: Retouching Photos

73ISSUE 94SEPTEMBER 2008

01 package ColorCast;

02 # Mike Schilli, 2008

03 # (m@perlmeister.com)

04 use strict;

05 use warnings;

06

 07 use YAML

08 qw(LoadFile DumpFile);

09 use Gimp qw(:auto);

10 use Log::Log4perl qw(:easy);

11

 12 my %channels = (

13 red => HISTOGRAM_RED,

14 blue => HISTOGRAM_BLUE,

15 green => HISTOGRAM_GREEN,

16);

17

 18 #############################

19 sub new {

20 #############################

21 my ($class, %options) = @_;

22

 23 my $self = {

24 yml_file => undef,

25 drawable => undef,

26 ctrls => undef,

27 %options,

28 };

29

 30 bless $self, $class;

31 }

32

 33 #############################

34 sub save {

35 #############################

36 my ($self) = @_;

37

 38 DumpFile $self->{yml_file},

39 $self->{ctrls};

40 }

41

 42 #############################

43 sub load {

44 #############################

45 my ($self) = @_;

46

 47 $self->{ctrls} =

48 LoadFile $self->

49 {yml_file};

50 }

51

 52 #############################

53 sub adjust_to {

54 #############################

55 my ($self, $ref_channel) =

56 @_;

57

 58 DEBUG

59 "Adjusting to $ref_channel";

60

 61 for my $channel (

62 keys %channels)

63 {

64

 65 next

66 if $ref_channel eq

67 $channel;

68

 69 my $ctrls = $self->{ctrls};

70

 71 my @points =

72 (0, 0, 255, 255);

73

 74 for my $ctrl (keys %$ctrls)

75 {

76 push @points,

77 $ctrls->{$ctrl}

78 ->{$channel},

79 $ctrls->{$ctrl}

80 ->{$ref_channel};

81 }

82

 83 gimp_curves_spline(

84 $self->{drawable},

85 $channels{$channel},

86 \@points

87);

88 }

89 }

90

 91 1;

Listing 2: ColorCast.pm

The load() method then parses the

YAML values, which are stored in a hash

of hashes. Starting in line 53, adjust_to()

then accepts a channel (e.g., green), and

it adjusts the values for the other two

channels (red, blue) to match the green

values. The GIMP function that handles

this is gimp_curves_spline(), which ac-

cepts the active layer in the image to be

modified and a series of control points

as parameters.

On top of the control points, you need

to pass (0,0) and (255,255) to adjust_

to() to make sure that the graph starts at

the bottom left-hand side and finishes at

top right, as shown in Figure 5.

If you do not specify any values, the

picfix script will not perform any color

correction. The -c option passes in a

YAML file that you created previously,

and the -a (adjust) option accepts the

channel name to which

the other two channels

will be adjusted. This

 defaults to green.

By typing

sudo apt-get

install libGIMP-perl

on Debian-based Linux distributions,

you should be able to install the whole

Perl GIMP enchilada.

Unfortunately, the Ubuntu 7.10 release

goes haywire. Synaptic takes the insanity

a step farther and even suggests unin-

stalling GIMP and the Ubuntu desktop

to install libgimp-perl.

The reason for this madness seems

to be a broken GIMP package, which

contains a couple of files belonging to

the libgimp-perl distribution, but not

the required Perl modules.

To work around this, use the steps out-

lined in the “Ubuntu Tricks” box: Down-

load the libgimp-perl source code, re-

build, increase the version number by

1 (that is … dfsg-2 becomes … dfsg-3),

and go on to install.

This solution is quick and dirty and

probably will not survive the next GIMP

update, but it’s good enough to get by

for now. Ubuntu Hardy fixes the prob-

lem for good.

After the install, you will need the Col-

orCast.pm module in a path where picfix

can find it; alternatively, you could hard

code the usr lib directory; in picfix to

match your ColorCast.pm installation

 directory.

The other Perl modules you need to

get started are available from CPAN and

can be installed in a CPAN shell or

can be installed more conveniently in

Ubuntu by typing apt-get install lib-

yaml-perl and liblog-log4perl-perl.

Line 16 in picfix sets the logging

level to $DEBUG, but you can switch to

$ERROR if all this verbosity is bugging

you (Figure 6).

Digital SLR cameras, such as the Nikon

D70, will store your images in raw for-

mat on request. Of course, doing so con-

sumes vast amounts of card space, and

you will need to install the Ubuntu

gimp-ufraw package to allow GIMP to

handle the raw data.

Although GIMP can read the .nef for-

matted raw data, it can’t actually store

files in this format, which explains why

picfix changes the file suffix to .png

shortly before writing to tell GIMP to

save the results in PNG format. p

Perl: Retouching Photos

74 ISSUE 94 SEPTEMBER 2008

01 sudo apt-get install devscripts

02 sudo apt-get source libgimp-perl

03 sudo apt-get build-dep libgimp-perl

04 cd libgimp-perl-2.0.dfsg+2.2pre1.dfsg

05 sudo dch --newversion=2.0.dfsg+2.2pre1.dfsg-3 -- Version Bump

06 sudo dpkg-buildpackage -uc -us

07 cd ..

08 sudo dpkg --install --force-overwrite libgimp-perl_2.0.dfsg+2.2pre1.

dfsg-3_i386.deb

Ubuntu Tricks

[1] Listings for this article:

ftp://ftp.linux-magazin.com/pub/

listings/magazine/94/

[2] Grokking the GIMP by Carey Bunks:

http://gimp-savvy.com/BOOK/

[3] Additional GIMP and photo-

manipulation books:

http://gimp-savvy.com/EXTRAS/

books.html

[4] Tutorial on the GIMP Perl interface:

http:// imagic. weizmann. ac. il/ ~dov/

 gimp/ perl-tut-2. 0/

INFO

Michael Schilli works

as a Software Devel-

oper at Yahoo!,

Sunnyvale, Cali for -

nia. He wrote “Perl

Power” for Addison-

Wesley and can be

 contacted at mschilli@perlmeister.

com. His homepage is at

http:// perlmeister. com.

T
H

E
 A

U
T

H
O

R

