
f you have ever searched a cluttered

desktop for an icon belonging to a

particular application, you might

have asked yourself who invented the

approach of using the mouse to select

applications. If you know the applica-

tion’s name, there is really no need to

waste valuable time picking an icon

from dozens on your desktop.

Spotty, a piece of Perl code, gives you

a customizable hotkey that immediately

pops up a window at the top right side

of your desktop (Figure 1). The keyboard

focus automatically shifts to the input

box. As soon as you start typing – fi, for

example – Spotty knows that the pro-

gram you want to launch must be Fire-

fox, pushes the name to the top of the

selection list, and gives you the option

of pressing the Tab key to accept the

 suggestion and launch the application.

All of this takes less than two seconds

and works like pressing Alt+F2 in

Gnome or KDE; however, coding your

own script means that you learn some-

thing new and can modify it to your

heart’s content.

Spotty learns from successful launches

and “remembers” the program names it

has found by keeping them in a persis-

tent database. The first time you use

Spotty to launch an application, you

must type firefox, for example, and con-

firm the entry by pressing the Enter key.

Spotty then searches through the di-

rectories defined by your $PATH environ-

ment variable and then launches the

program. The next time you use the pro-

gram, it attempts to compare your input

with the program names it has learned

and shows matches on the right side of

the input box. After Spotty has pushed

the program you are looking for to the

top of the list, just press the Tab key to

tell Spotty to fire up the application.

To launch the application, Spotty uses

exec. This overloads the current process

(the Perl script) with the external appli-

cation, thus removing Spotty from the

process table and leaving the launched

application in its place. Thus, the exec in

the launch function in line 133 is the end

of the script because the process does

not return from it.

The database in which the program

names are stored is a persistent hash

that uses the CPAN DB_File module em-

ploying a Berkeley DB. The script up-

dates the database whenever the hash

associated with it by the tie command is

changed. To close everything gracefully,

line 125 issues an untie shortly before

the exec command to untie the hash

from the database and store the changes.

As you can see from Listing 1, Spotty

uses the CPAN Tk module to draw the

application window with the input box.

To prevent the window appearing just

anywhere on the desktop and to keep it

firmly in the top right-hand corner,

Spotty then calls the geometry() method

with the -0+0 parameters. -0 stands for

the x coordinate on the far right, and +0

stands for the topmost y coordinate.

The main window, $top, is of the

MainWindow type and contains two

widgets: an Entry type input field on the

left and a Label type display to its right.

Linked to the $entry input box widget is

a text variable, $input, which Tk uses to

store the text typed by the user and

which is refreshed after each keystroke.

Because the -validate option has a value

of "key", Tk jumps to the validate()

The Spotlight utility for the Macintosh has even the

most hardened Apple fans scurrying back from the

mouse to the keyboard. A short Perl script implements

the utility for the Linux desktop. BY MICHAEL SCHILLI

Perl: Spotty

76 ISSUE 93 AUGUST 2008

function (lines 75ff.) for each keystroke;

the -validatecommand option is used to

pass a reference to the function in to the

widget. Of course, the function doesn’t

actually validate anything here because

it always returns a 1; it simply serves to

execute a callback that searches the da-

tabase for matches for each character

the user types. The Label widget to the

right of the Entry widget monitors a text

variable, $label_

text, and the Tk

Manager updates

the display when-

ever its value

changes.

If the validate()

function notices

that matches()

(lines 85ff.) finds

one or more

matches for the

word entered by

the user, it sepa-

rates them by line

breaks and con-

catenates them to

a single string that

it stores in $label_

text. This prompts

Spotty to display the matches to the right

of the input window without any addi-

tional programming effort.

The packer (lines 52 and 54) uses the

-side => "left" option to pack both wid-

gets into the container object, the main

window $top. If "left" moves multiple

objects into a container, the packer lines

them up from left to right. The "left"

 option tells the packer to glue any new

widgets to the left border of the available

space. If a widget is already sitting in

this slot, the next one is dropped on the

far left of the free space to its right.

Spotty reacts to the Return and Tab

keys. Return confirms the string entered

thus far, and Tab accepts the first ele-

ment in the list of suggestions. Perl-Tk

uses bind calls in lines 59 and 61 to bind

the keys to the launch() (lines 110ff.)

and complete() (lines 102ff.) functions,

respectively. The latter simply sets the

variable for the Entry widget to the top

match, $first_match, and then calls

launch() so the user does not need to

press Enter to launch the application.

The bind entry in line 57 tells Spotty to

cancel the action and exit the program

if somebody presses Ctrl+Q.

The call to focus() in line 64 shifts the

keyboard focus to the Entry widget,

which is important because the user

would otherwise need to drag the mouse

and click the entry box to get the widget

to accept keyboard input.

After defining all these settings, Main-

Loop in line 65 launches the GUI, which

runs until an application launches or the

user bails out of the program by pressing

Ctrl+Q. In this case, or in case of an

Perl: Spotty

77ISSUE 93AUGUST 2008

001 #!/usr/local/bin/perl -w

002 use strict;

003 use Log::Log4perl qw(:easy);

004 use DB_File;

005 use Tk;

006

 007 my %sudo_programs =

008 map { $_ => 1 }

009 qw(synaptic);

010

 011 my @misc_paths =

012 qw(/usr/sbin);

013

 014 my ($home) = glob "~";

015 my $spotty_dir =

016 "$home/.spotty";

017

 018 #Log::Log4perl->easy_init();

019

 020 if (!-d $spotty_dir) {

021 mkdir $spotty_dir, 0755

022 or LOGDIE "Cannot mkdir ",

023 "$spotty_dir ($!)";

024 }

025

 026 # Init database

027 my %DB_FILE;

028 tie %DB_FILE, "DB_File",

029 "$spotty_dir/db_file.dat"

030 or LOGDIE "$!";

031

 032 # Application window

033 my $top = MainWindow->new();

034 $top->geometry("-0+0");

035

 036 my ($input, $first_match,

037 $label_text);

038

 039 my $label = $top->Label(

040 -textvariable =>

041 \$label_text,

042 -width => 20

043);

044

 045 my $entry = $top->Entry(

046 -textvariable => \$input,

047 -validatecommand =>

048 \&validate,

049 -validate => "key",

050);

051

 052 $entry->pack(

053 -side => "left");

054 $label->pack(

055 -side => "left");

056

 057 $entry->bind(

058 "<Control-Key-q>", \&bail);

059 $entry->bind("<Return>",

060 sub { launch($input) });

061 $entry->bind("<Tab>",

062 \&complete);

063

 064 $entry->focus();

065 MainLoop;

066

 067 #############################

068 sub bail {

069 #############################

070

 071 $top->destroy();

072 }

Listing 1: Spotty (continued on p78)

error, the bail function (line 68) helps

to clean up by calling the top window’s

destroy method, thus removing the GUI.

Choosing a keyboard shortcut for your

Spotty desktop hotkey that’s not in use

by any other application program makes

sense; remember that pressing it shifts

the keyboard focus to the tool. This

might not be easy in the case of key

hogs, such as Vim. I opted for Ctrl+U

because it’s easy to press and is not on

my list of frequently used Vim com-

mands. (Of course, Vim does use the

combination to scroll the edited text up,

but I use Ctrl+B instead.)

Unfortunately, the Gnome desktop on

my Ubuntu installation thinks it knows

better and only lets me bind selected ap-

plications to hotkeys, not just any old

program. To resolve this issue, I had to

run gconf-editor (Figure 2). If the tool is

missing, you can issue sudo apt-get in-

stall gconf-editor to install the package.

Below Apps, you will see an entry for

Metacity (the Gnome Window man-

ager), and below this, the items global_

keybindings and keybinding_commands.

Set run_command_1 below global_key-

bindings to the required hotkey combi-

nation – for example, Ctrl+U – and then

add the path to Spotty below keybind-

ing_commands.

Launching a program that needs root

privileges causes a minor problem be-

cause you would normally have to enter

your password. The Ubuntu package

manager, synaptic, is one example of

this. The program will run, but without

root privileges, which means that it can

query packages but cannot install new

ones.

Spotty solves this with the hash de-

fined in line 7: %sudo_programs. If the

program selects one of the programs

listed here, line 130 not only issues an

exec, but Spotty also launches an Xterm

terminal that calls sudo to launch the

program in question. The effect of this is

that the shell in the xterm that pops up

onscreen first prompts you for a pass-

word, and if you enter the right one, it

runs the program with root privileges.

If you would like to search for com-

mands in paths outside of your $PATH

environment variable, you can add en-

tries to the @misc_paths array in line 11.

path_search() automatically finds pro-

grams in the extended path.

Also, if you prefer to use the cursor

keys instead of typing letters, you can

extend the Perl code to draw a list box

populated with matches to the right of

the input box and select an entry from

the list.

Regardless of which approach you pre-

fer, if you know what you are looking

for, you will find it much faster with a

little help from Spotty. p

Perl: Spotty

78 ISSUE 93 AUGUST 2008

[1] Listings for this article: http:// www.

 linux-magazine. com/ resources/

 article_code

INFO

073

 074 #############################

075 sub validate {

076 #############################

077 my ($got) = @_;

078

 079 $label_text = join "\n",

080 matches($got);

081 return 1;

082 }

083

 084 #############################

085 sub matches {

086 #############################

087 my ($got) = @_;

088

 089 my @all =

090 sort keys %DB_FILE;

091 my @matches =

092 grep { /^$got/ } @all;

093 if (@matches) {

094 $first_match = $matches[0];

095 } else {

096 $first_match = undef;

097 }

098 return @matches;

099 }

100

 101 #############################

102 sub complete {

103 #############################

104

 105 $input = $first_match;

106 launch($input);

107 }

108

 109 #############################

110 sub launch {

111 #############################

112 my ($program) = @_;

113

 114 my $path =

115 path_search($program);

116

 117 LOGDIE

118 "$program not found ",

119 "in path ($ENV{PATH})"

120 unless defined $path;

121

 122 $DB_FILE{$program}++

123 if defined $path;

124 DEBUG "Launching $path";

125 untie %DB_FILE;

126 if (

127 exists

128 $sudo_programs{$program})

129 {

130 exec "xterm", "-e", "sudo",

131 "$path";

132 } else {

133 exec $path;

134 }

135 LOGDIE

136 "exec $path failed: $!";

137 }

138

 139 #############################

140 sub path_search {

141 #############################

142 my ($program) = @_;

143

 144 DEBUG "PATH is $ENV{PATH}";

145

 146 for my $path (

147 split(/:/, $ENV{PATH}),

148 @misc_paths)

149 {

150 if (-x "$path/$program") {

151 DEBUG "$program found ",

152 "in $path";

153 return "$path/$program";

154 }

155 }

156

 157 ERROR "$program not found";

158 return undef;

159 }

Listing 1: Spotty (continued from p77)

