
Recently, I needed to investigate
the write activity of a Linux pro-
cess and was surprised to dis-

cover that CPAN had a Ptrace module.
Ptrace is a technology that roots in the
Linux kernel, adding the ability to step
through processes and retrieve informa-
tion on the data they use. Debuggers
such as GDB leverage this technology
and build a user interface on it.

To find out which files a process opens
for writing over the course of its lifetime,
you can pass the PTRACE_SYSCALL pa-
rameter to ptrace to make the process
stop whenever it issues a system call.
Filtering out calls coming from libc’s
open() function in write mode then re-
veals the desired list of files. Invoking
objdump ‑d /lib/libc.so.6 tells you what
libc does to open the specified file and
return a file descriptor (Figure 1).

To most of us, disassembler output is
incomprehensible at first glance. The

x86 assembler code in Figure 1 picks up
the function parameters for open() from
the stack (%esp) and uses the mov
(move) instruction to store them in the
processor registers EBX, ECX, and EDX
(assembler code prepends a percent
sign). From the include file
adm/unistd.h (Figure 2), you can see

that the kernel refers to the open() sys-
tem call internally as 5, and libc calls
mov $0x5,%eax to write the value to the
processor’s EAX register.

The int $0x80 call lets the kernel take
control. The call triggers an interrupt,
and the kernel switches to privileged
mode and processes the system call on

Linux lets users watch the kernel at work with a little help from Ptrace, a tool that both debuggers and mali-

cious process kidnappers use. A CPAN module introduces this technology to Perl and, if this is not enough, C

extensions add functionality. By Michael Schilli

Perl script uses Ptrace for process tracing

Process sPy
Scott M

axw
ell, Fotolia

PROGRAMMINGPerl: Ptrace

75iSSUe 91JUNE 2008

Figure 1: The libc code that tells the kernel to execute the open() system call.

the other side of the wall in kernel land.
It picks up the parameters from the pro-
cessor registers where they were stored
previously by libc.

The open() function expects up to
three parameters: int open(const char
*pathname, int flags, mode_t mode).
The string that specifies the path will ob-
viously not fit in a 32-bit register. There-
fore, the EBX register only holds the
memory address at which the string can
be found.

To find out whether a system call
picked up at random is an open() with
write option, the monitoring code must

check to see whether
EAX contains the value
5 (the code for open())
and whether an AND op-
eration of the ECX regis-
ter and the O_WRONLY
constant defined in sys/
fcntl.h results in a true
value. A file could also
be opened for writing
with O_RDWR (read/
write access) or O_AP‑
PEND (append to file),
but I will ignore

this to keep things simple. Inci-
dentally, it makes no difference
which higher level language was
used to write the code – C, Perl,
Java, Ruby, etc. All of them use
the open() call from libc.

Listing 1 shows the Perl code
that helps a script trace system
calls in a process and eavesdrop
on it for occurrences of open()
requests with write intention.
Figure 3 illustrates the interac-
tion between the parent and
child processes during the trace.
After the fork(), the new child

process issues the Ptrace PTRACE_TRA‑
CEME command and then launches the
surveyed program with exec(). The par-
ent process waits (waitpid()) for the ker-
nel to stop the child process right after it
has started its payload. The parent pro-
cess then reactivates the child process by
issuing PTRACE_SYSCALL, which tells
the kernel to stop the child again the
next time it issues a system call. The
next time the child is then stopped, the
parent process can investigate which
system call has been issued with which

Perl: PtracePROGRAMMING

76 iSSUe 91 JUNE 2008

001 #############################

002 # Mike Schilli, 2008

003 # (m@perlmeister.com)

004 #############################

005 package WriteTracer;

006 use strict;

007 use POSIX;

008 use Inline "C";

009 use Fcntl;

010

 011 use Sys::Ptrace qw(ptrace

012 PTRACE_SYSCALL

013 PTRACE_TRACEME);

014

 015 #############################

016 sub run {

017 #############################

018 my ($prg, @params) = @_;

019

 020 my @files = ();

021 my %files = ();

022

 023 if ((my $pid = fork()) < 0){

024 die "fork failed";

025 } elsif ($pid == 0) {

026

 027 # child

028 ptrace(PTRACE_TRACEME,

029 $$, 0, 0);

030 exec($prg, @params);

031

 032 } else {

033

 034 # parent

035 {

036 my $rc = waitpid($pid, 0);

037 last if $rc < 0;

038

 039 if (WIFSTOPPED($?)) {

040 my ($eax, $orig_eax,

041 $ebx, $ecx, $edx)

042 = ptrace_getregs($pid);

043

 044 if ($eax == ‑ENOSYS()) {

045 if ($orig_eax == 5

046 and $ecx & O_WRONLY) {

047 my $str =

048 ptrace_string_read(

049 $pid, $ebx);

050 push @files, $str

051 unless $files{$str}++;

052 }

053 }

054

 055 ptrace(PTRACE_SYSCALL,

056 $pid, undef, undef);

057 redo;

058 }

059 }

060 }

061 return @files;

062 }

063

 064 1;

065

 066 __DATA__

067 __C__

068 #include <sys/ptrace.h>

069 #include <asm/user.h>

070

 071 #define IVPUSH(x) \

072 Inline_Stack_Push(\

Listing 1: WriteTracer.pm

Figure 2: Excerpt from unistd.h.

Figure 3: Parent and child process interacting during

Ptrace tracing.

... ...

(starts ...) PTRACE-SYSCALL

STOP waitpid(child)

(starts ...) PTRACE-SYSCALL

STOP waitpid(child)

Parent Child

PTRACE_TRACEME

parameters with the use of other Ptrace
commands.

Normally, the kernel would call the
appropriate system call handler without
any delay after receiving a system call

request. If the kernel notices that
Ptrace is monitoring the process,
it instead jumps to the tracesys
kernel function that
•	stops	the	process	and	notifies	
the parent process of the immi-
nent system call and
•	stops	again	after	completing	
the system call and notifies the
parent process of the results.
To allow the tracer to distinguish
between these two cases, the

kernel sets the EAX register to ‑ENOSYS
for the first stop. As I mentioned previ-
ously, the EAX register normally con-
tains the number of the system call to be
executed. ‑ENOSYS is the kernel’s error

message if it encounters a non-existent
system call number. Because this is an
impossible value for a system call, the
tracing process knows that the subject of
the trace is about to issue a system call,
whose number the kernel stores in
ORIG_EAX for safekeeping.

Line 39 in WriteTracer.pm uses the
WIFSTOPPED() macro and Perl’s status
variable $? to check to see whether the
child process stopped or whether wait‑
pid() alerted because the child crashed.
Line 44 verifies that the EAX register
read by the ptrace_getargs() function
does contain a value of ‑ENOSYS.

If so, the next if condition checks to
see whether ORIG_EAX is set to 5 (the

PROGRAMMINGPerl: Ptrace

77iSSUe 91JUNE 2008

073 sv_2mortal(newSViv(x)));

074

 075 /* ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ */

076 void ptrace_getregs(

077 int pid) {

078 int rc;

079 struct user_regs_struct

080 registers;

081 Inline_Stack_Vars;

082

 083 rc = ptrace(PTRACE_GETREGS,

084 pid, 0, ®isters);

085

 086 if(rc == ‑1) {

087 return ‑1;

088 }

089

 090 if(registers.eax ==

091 ‑ENOSYS) {

092 Inline_Stack_Reset;

093 IVPUSH(registers.eax);

094 IVPUSH(registers.orig_eax);

095 IVPUSH(registers.ebx);

096 IVPUSH(registers.ecx);

097 IVPUSH(registers.edx);

098 Inline_Stack_Done;

099 }

100 }

101

 102 /* ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ */

103 int

104 ptrace_aligned_word_read_c(

105 int pid, void *addr,

106 char *buf, int *len) {

107

 108 char *aligned_addr;

109 long word;

110 void *ptr;

111

 112 aligned_addr = (char *) (

113 (long)addr &

114 ~ (sizeof(long) ‑ 1));

115

 116 word = ptrace(

117 PTRACE_PEEKDATA, pid,

118 aligned_addr, NULL);

119

 120 if(word == ‑1) {

121 return ‑1;

122 }

123

 124 *len = sizeof(long) ‑ (

125 (long) addr ‑

126 (long) aligned_addr);

127 ptr = &word;

128 ptr +=(sizeof(long) ‑ *len);

129 memcpy(buf, ptr, *len);

130

 131 return 0;

132 }

133

 134 /* ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ */

135 void ptrace_string_read(

136 int pid, void *addr) {

137

 138 char word_buf[sizeof(long)];

139 int word_len;

140 SV *pv;

141 int rc;

142 int i;

143 Inline_Stack_Vars;

144

 145 pv = newSVpv(

146 (const char *)"", 0);

147

 148 while(1) {

149

 150 rc =

151 ptrace_aligned_word_read_c(

152 pid, addr,

153 word_buf, &word_len);

154

 155 if(rc < 0) {

156 return;

157 }

158

 159 for(i=0; i<word_len; i++) {

160 if(word_buf[i] == '\0') {

161 goto FINISH;

162 }

163 sv_catpvn(pv,

164 (const char *)

165 &word_buf[i], 1);

166 }

167 addr += word_len;

168 }

169

 170 FINISH:

171 Inline_Stack_Reset;

172 Inline_Stack_Push(

173 sv_2mortal(pv));

174 Inline_Stack_Done;

175 }

Listing 1: WriteTracer.pm (continued)

Figure 4: The tracer identifies the files opened for

reading by the Perl script.

open() system call number) and whether
an AND operation with O_WRONLY and
the ECX register returns a true value. If
all of these conditions are fulfilled, the
ptrace_string_read() function reads the
string at the memory address stored in
the EBX register and stores the returned
Perl scalar in the @files array. A hash
%files ensures that this happens exactly
once per file name.

After this, WriteTracer.pm issues a
ptrace command with the PTRACE_SYS‑
CALL parameter, which revives the
child. The redo instruction in line 57 of
the parent process jumps to waitpid(),
which waits for the next child process
state change. Listing 2 shows an applica-
tion for the tracer and expects a com-
mand along with its command-line pa-
rameters to pass to WriteTracer.pm. Fig-
ure 4 shows a Perl program that opens
two files along with the correct output
of the tracer monitoring the process.

The Sys::Ptrace Perl module from
CPAN, which I used for the Ptrace com-
mands, is not complete. To work around
this, WriteTracer.pm uses Inline::C to de-
fine a few C extensions. The functions
called by the Perl code, ptrace_getregs()
and ptrace_string_read(), are defined in
the __DATA__ area following the Perl
code. Inline::C compiles them the first
time that WriteTracer.pm is executed.

The ptrace_getregs() function expects
the child process number because the

ptrace(PTRACE_GETREGS,...) function
requires you to specify the process
whose registers you want it to query.
The register values are stored in a user_
regs_struct type C structure, which is de-
fined in the asm/user.h kernel header.
The IVPUSH() Perl macro defined above
then pushes the values onto the Perl
stack to allow the ptrace_getregs() inline
C Perl function to return a list of register
values to Perl land.

The values prepared by
sv_2mortal(newSViv(x)) are temporary
scalars that Perl’s garbage collector
cleans up when the referencing Perl
 variables disappear from their scope.

The ptrace_string_read() function de-
fined in lines 135ff. of Listing 1 uses the
Ptrace TRACE_PEEKDATA command to
read a C string at a known memory ad-
dress, but it does have to deal with the
peculiarities of alignment in Linux mem-
ory. As Figure 5 shows, strings can start
at arbitrary memory addresses but can
only be retrieved at 4-byte word bound-
aries. The ptrace_aligned_word_read_c()
C function defined in lines 104ff. handles
this; it expects a PID and a memory ad-
dress and returns a buffer along with its
length as buf and len. If the address lies
on a word boundary, the first snippet
has a length of 4 bytes; the length is
shorter for uneven addresses.

At first, the Perl scalar created by
newSVpv() to hold the file name string
is empty, and sv_catpvn() appends each
new byte it finds. If the function encoun-
ters a null byte, it has found the end of
the string in memory and uses goto to
jump out of the twin loop to the FINISH
label.

Restrictions
If the program traced by Ptrace invokes
further processes, it is impossible to
trace them. Because make does not exe-
cute the installation commands within
the same process (instead, it launches
new ones for each of them), you can’t

simply trace what make does by running
write‑tracer make install.

To work around this restriction, tracers
such as installwatch [2] and checkinstall
[3] adopt a different approach. They set
the LD_PRELOAD environmental vari-
able, which injects a shared library with
system call wrappers and which the sub-
processes inherit from make. The wrap-
per library defines new entries for all
popular file functions in libc and tricks
the traced program into thinking that
these are the real thing.

The wrapper functions only log the
proceedings before calling the appropri-
ate libc function, which does all the
work. But even this approach fails if a
Perl script issues the system("cp a b")
command, because LD_PRELOAD is not
inherited in this case, and installwatch
or checkinstall don’t notice the copy.

Ptrace is not only useful for legitimate
applications. Black hats love to use the
technology to hijack active processes to
do their dastardly deeds [4].

If you are interested in more advanced
debugging and process tracing tech-
niques besides Ptrace, read Self‑Service
Linux [5], which was a big help to me
in writing this article.

Ptrace’s biggest customer is the strace
[6] command-line tool, which traces –
and can latch onto – active processes. n

Perl: PtracePROGRAMMING

78 iSSUe 91 JUNE 2008

[1] Listings for this article:
 http:// www. linux‑magazine. com/
 resources/ article_code

[2] Installwatch: http:// asic‑linux. com. mx/
 ~izto/ checkinstall/ installwatch. html

[3] CheckInstall: http:// asic‑linux. com. mx/
 ~izto/ checkinstall/

[4] Burns, Bryan, et al. Security Power
 Tools, “Execution Flow Hijacking.”
 O’Reilly, 2007.

[5] Wilding, Mark, and Dan Behman.
 Self‑Service Linux. Prentice Hall, 2006.

[6] Strace:
 http:// sourceforge. net/ projects/ strace/

INFO

01 #!/usr/bin/perl ‑w

02 #############################

03 # write‑tracer

04 # Mike Schilli, 2008

05 # (m@perlmeister.com)

06 #############################

07 use strict;

08 use WriteTracer;

09

 10 die "usage: $0 program"

11 unless @ARGV;

12

 13 my @files =

14 WriteTracer::run(@ARGV);

15

 16 print "Written files: ",

17 join(", ", @files), "\n";

Listing 2: write-tracer

Figure 5: Although the string starts at 0x804848d, access has to start at the word bound-

ary (0x804848c).

0x804848c 0x804848d

‚/‘

0x804848e

‚e‘

0x804848f

‚t‘

0x8048490

‚c‘

0x8048491

‚/‘

0x8048492

‚p‘

0x8048493

‚a‘

