
80

R
ecently, I was reading Mind

 Performance Hacks [1] and stum-

bled across Hack Number 43,

which explains how to determine the

day of the week for any given date.

The method is attributed to Lewis

 Carroll [2], the author of Alice’s Adven-

tures in Wonderland. Simply calculate

four values, one after the other, for the

year, month, and day, and a fourth value

as an adjustment factor. Then add the

values, divide by 7, and the remainder

amazingly gives you the day of the week

as a number between zero (Sunday) and

six (Saturday).

Example Day
As an example, I’ll take the day I wrote

this article, October 4, 2007, as a starting

point. To obtain the year value, do the

following:

(YY + (YY div 4)) mod 7

where YY is the two-digit year (07 for

2007). The div operator divides without

a remainder; 7 div 4 is thus 1 because 7

divided by 4 gives you a result of 1, and

the remainder of 3 is ignored. A modulo

7 operation is performed on the resulting

sum, and 8 modulo 7 is 1. The value for

the year is thus 1.

Perl script reveals math trick

MIND GAMES

A
le

k
s
a
n

d
r P

o
p
o
v
, F

o
to

lia

A trick that anybody can learn lets you determine the

day of the week from the date. We’ll apply some Perl

technology to discover whether the method is reliable.

BY MICHAEL SCHILLI

Perl: Math TricksPROGRAMMING

Value Month

0 January

3 February

3 March

6 April

1 May

4 June

6 July

2 August

5 September

0 October

3 November

5 December

Table 1: Month Values

Year Value

1700 4

1800 2

1900 0

2000 6

2100 4

2200 2

2300 0

Table 2: Adjustment Values
for Years

80 ISSUE 87 FEBRUARY 2008

078-080_perl.indd 80 13.12.2007 16:17:42 Uhr

81

The month value is taken from Table

1, which you need to memorize using a

mnemonic device (described later in the

“Mnemonic Tricks” section). The table

gives a month value of 0 for October.

The value for the day is simply its num-

ber, so October 4 has a day value of 4.

The fourth value to work out in your

head is taken from Table 2, which gives

an adjustment value of 6 for years be-

tween 2000 and 2099.

Memorizing this table is not neces-

sary; just remember the values of 2000

(6) and 1900 (0) because most people

will ask for days of recent events or birth

dates. One caveat is that you need to

subtract 1 for leap years if the date you

are looking for is in January or February,

but 2007 isn’t a leap year so you can ig-

nore this for now.

The four values are 1 (year), 0

(month), 4 (day), and 6 (adjustment fac-

tor). If you add these values (=11) and

perform a modulo 7 operation on the re-

sult, you get a value of 4.

A quick glance at Table 3 reveals that

– roll of drums, please! – October 4,

2007, was a Thursday.

Testing, One, Two!
The question is whether this trick really

does give you the day of the week for

any date. The script in Listing 1 [3] iter-

ates through every single day from

1.1.1700, (day.month.year) to the pres-

ent day – through a period of history

that saw the California Gold Rush and

two world wars – and into the future

world of “Star Trek: The Next Genera-

tion” and the 24th century.

Line 34 of the script defines the func-

tion wday_mindcal(), which expects the

four-digit year, month, and day for a

date. Then the script applies the rules

explained above to calculate the values

for the year/ month/ day and an adjust-

ment factor, and performs the calcula-

tions required to determine the number

of the day of the week.

The month values are stored in the

@MONTH array, from January to De-

cember. Because arrays start on index 0

rather than 1, you must subtract 1 from

the month you are looking for to access

the array with the correct index.

The adjustment factors for the various

centuries are stored in the %ADJ hash.

Lines 10 through 12 populate the hash

by assigning a list that alternately has

the century numbers and the matching

adjustment values.

The reference values are calculated by

the CPAN DateTime module, which

counts upward from 1.1.1700 through

31.12.2399 and provides the day, month,

and year for each iteration.

The infinite loop starting in line 20

isn’t really infinite because line 30 exits

if the year for the current date is higher

than 2399. Inside the loop, the DateTime

object’s add() method adds a day to the

current date and sends the program into

the next iteration.

CPAN for Comparison
DateTime has a day of the week func-

tion, wday(), which numbers the days

from 1 (Monday) through 7 (Sunday).

Mindcal does a modulo 7 to change the

7 for Sunday into a zero and compares

the results with the values returned by

wday_mindcal(), which will be between

0 (Sunday) and 6 (Saturday).

The script implements a remainderless

division function, div, by enabling a

pragma in line 39, use integer. Once you

set this mode, Perl will ignore floating

points and work with integers, meaning

that 17/ 4 gives you a straight 4.

The leap_year() function in line 64 de-

termines whether the year is a leap year.

If the year is divisible by 4, it is a leap

year, unless it is divisible by 100. On the

other hand, if it is divisible by 400, it is

a leap year. Of course, DateTime has the

same logic, but you want the script to

emulate somebody working this out

mentally.

The comparisons are performed by the

is() function exported by the CPAN Test::

More module. The function expects three

parameters: the actual value provided by

the math genius in the mindcal script,

the reference value from DateTime, and

a comment comprising a stringified –

and thus readable – DateTime object.

The script passes no_plan in to the

Test::More use instruction to specify that

the number of tests to be performed is

undefined.

Figure 1 shows the output from mind-

cal. Working on the assumption that no-

body is interested in watching 250,000

lines of output scroll down the screen,

the Test::Harness module neatly collates

the results provided by the test suite.

The command line

perl -MTest::Harness U

-e'runtests("mindcal")'

PROGRAMMINGPerl: Math Tricks

81ISSUE 87FEBRUARY 2008

Figure 1: Test::More outputs the results of

individual tests. Figure 2: Test::Harness collates the results.

Value Day of the Week

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

Table 3: Day Values

Date Year value Month value Day value Adjustment Day of the Week

01.01.1970 3 0 1 0 4 Thursday

14.07.1995 6 6 14 0 5 Friday

11.09.2001 1 5 11 6 2 Tuesday

01.02.2004 5 3 1 5 0 Sunday

01.03.2004 5 3 1 6 1 Monday

04.10.2007 1 0 4 6 4 Thursday

Table 4: Examples

078-080_perl.indd 81 13.12.2007 16:18:00 Uhr

runs the mindcal script and monitors

which tests return values of ok and

which return not ok.

Test Results
At the end of the test, the user is given a

neat summary, as shown in Figure 2.

The command line in Figure 2 is slightly

different from that above. Test::Harness

has the unpleasant habit of complaining

on STDERR if you have more than

100,000 test cases in a suite.

The command line shown in Figure 2

drops these messages into a black hole

via the __WARN__ signal handler. Lo

and behold, Lewis Carroll was right – all

255,669 tests run without error.

Mnemonic Tricks
A memory aid can help you remember

the month values. The numbers from

January through December are

033614625035 if you lump them all to-

gether. Preferably, I split this monster

number up into groups of three, 033-614-

625-035, and then use the mnemonic:

“Start with 033 and go to 614 like 3.14 –

easy as pi, but with a 6 at the start, be-

cause we just had two 3s. Follow with

625; it starts with a 6 and is 252, the area

of a square – a nice change from the

 circle (pi) we just had. Finish with 035,

two more than the first group of 033.”

I visualize the groups of three, which

makes it easy to jump to the start of the

second half of the year group, with the

number 6 is assigned to July.

Practice Makes Perfect
At first, your calculations might go quite

slowly, especially if you are trying to

work out the days of the week in the lat-

ter part of last century.

Think about 1995, for example: 95 di-

vided by 4 equals 23, ignoring fractions;

95 plus 23 equals 118, and 118 modulo 7

is 6. If you can’t do this quickly in your

head, you should stick to accepting

dates from a specific year or from the

current year. In advance, you can calcu-

late the year value and just remember it,

for example, 1 for 2007.

More Examples
Table 4 gives you a couple of practice ex-

amples. Remember that 2004 is a leap

year, so you need to deduct a point for

dates in January/ February, but not for

the other months.

On with the Show
After you have mastered the trick, you

can astound your audience with your

mental prowess. Start with a small group

of friends before you move on to parties

and sold-out theaters! �

Perl: Math TricksPROGRAMMING

82 ISSUE 87 FEBRUARY 2008

[1] Hale-Evans, Ron. Mind Performance

Hacks. O’Reilly, 2006, http:// www.

 oreilly. com/ catalog/ mindperfhks/

[2] Lewis Carroll’s Algorithm for finding

the day of the week for any given

date,http:// www. cs. usyd. edu. au/ ~kev/

 pp/ TUTORIALS/ 1b/ carroll. html

[3] Listings for this article:

http:// www. linuxpromagazine. com/

 Magazine/ Downloads/ 87/

INFO

01 #!/usr/bin/perl

02 use strict;

03 use warnings;

04 use Test::More qw(no_plan);

05 use DateTime;

06

 07 my @MONTH =

08 qw(0 3 3 6 1 4 6 2 5 0 3 5);

09 my %ADJ =

10 qw(1700 4 1800 2 1900 0

11 2000 6 2100 4 2200 2

12 2300 0);

13

 14 my $dt = DateTime->new(

15 year => 1700,

16 month => 1,

17 day => 1,

18);

19

 20 while (1) {

21 my $calc =

22 wday_mindcal($dt->year,

23 $dt->month, $dt->day);

24

 25 is($calc, $dt->wday() % 7,

26 "$dt");

27

 28 $dt->add(days => 1);

29

 30 last if $dt->year() > 2399;

31 }

32

 33 #############################

34 sub wday_mindcal {

35 #############################

36 my ($year, $month, $day)

37 = @_;

38

 39 use integer;

40

 41 my $year2 = $year % 100;

42 my $cent = $year / 100;

43 my $y = (

44 $year2 + ($year2 / 4))

45 % 7;

46

 47 my $m =

48 $MONTH[$month - 1];

49 my $d = $day;

50

 51 my $adj =

52 $ADJ{ $cent * 100 };

53

 54 $adj--

55 if leap_year($year)

56 and $month <= 2;

57

 58 return (

59 ($y + $m + $d + $adj) %

60 7);

61 }

62

 63 #############################

64 sub leap_year {

65 #############################

66 my ($year) = @_;

67

 68 return 0 if $year % 4;

69 return 1 if $year % 100;

70 return 0 if $year % 400;

71 return 1;

72 }

Listing 1: mindcal

Michael Schilli works

as a Software Devel-

oper at Yahoo!,

Sunnyvale, Cali for -

nia. He wrote “Perl

Power” for Addison-

Wesley and can be

 contacted at mschilli@ perlmeister.

com. His homepage is at

http:// perlmeister. com.

T
H

E
 A

U
T

H
O

R

078-080_perl.indd 82 13.12.2007 16:18:04 Uhr

