
76

I
f somebody applies for an entry-level

job in Yahoo’s Perl division and has

the pleasure of visiting me for a job

interview, I might just ask the candidate

the following question: “How do you

add line numbers to a Perl listing, such

as the ones typically used by computer

magazines?”

Stress
Adding line numbers to a

Perl listing is a fairly simple

task, and almost any candi-

date will solve it. But some applicants

trip up over the task of aligning the line

numbers. If the listing has nine lines, all

of the line numbers are single digit, but

numbers are double digit for listings of

between 10 and 99 lines, with the single-

digit numbers padded with leading zeros

(01-09). Longer listings with more than

100 and fewer than 1000 lines need

three-digit line numbers, and program-

mers start numbering at 001.

Perl’s integrated printf() function has

an option to format numbers with lead-

ing zeros. A format string like

%03d converts the integer 3 to

the string 003; 99 is converted to

099, and 100 stays 100.

But how does printf() pad the

string to a variable length? If

somebody suggests an if/elsif construc-

tion that checks for a limited number of

number lengths, the alarms ring and the

trap door to the shark pool opens.

C
h

ris
to

s
 G

e
o
rg

h
io

u
, F

o
to

lia

Problem solving with Vim

TEST QUESTIONS
The Vim editor supports Perl plugins that let users manipulate the text they have just edited. Complex functions

can be developed far faster than with Vim’s integrated scripting language. BY MICHAEL SCHILLI

Perl: VimPROGRAMMING

76 ISSUE 86 JANUARY 2008

076-078_perl.indd 76 15.11.2007 16:27:06 Uhr

77

If the column width of the greatest line

number is stored in the $numlen vari-

able, you might just piece together the

format string before passing it to printf.

Concatenating the bits "%0" . $numlen .

"d" will do the trick.

Note that if you wrote everything in a

single string without paying special at-

tention, Perl would interpret "%0$num-

lend" as referencing a non-existing vari-

able named $numlend. Perl savants will

know that a scalar can be written as

${numlen} instead of $numlen, and this

saves the day – "%0${numlen}d" cor-

rectly references $numlen and appends

"d" at the end.

Those of you who grew up on C might

remember that printf() supports variable

format fields with the asterisk (.*) as a

wildcard and an additional parameter.

An expression like printf("%0.*d", 3, 1)

pads the number 1 to three digits by

adding leading zeros.

Also, programmers can replace 3 with

a variable to pad a line number to a dy-

namically assigned width.

Back to School
How do you know the length $numlen

of the last line number $num? This is,

how many digits make up $num? As you

might know, Perl has no problem con-

verting numbers to strings, and the inte-

grated length() function will give you

the string length. A call to length($num)

therefore returns the value needed for

$numlen.

As another option, in the decimal sys-

tem, digits are weighted from right to

left: 100, 101, 102, and so on. Thus, the

number 15 can be broken down to 5 *

100 + 1 * 101. The number 100, a three-

digit number, can also be expressed as 1

* 102. The number 1000, a four-digit

numbers, is equivalent to 1 * 103.

So how many digits does the number

N comprise?

If you paid attention in school, you’ll

probably recall that if you want to cal-

culate the result of “10 to the power of

what is N?”, you need to establish the

decimal logarithm of N. Although Perl

does not have a decimal logarithm, it

does have the log() function that calcu-

lates the log of a number to base e (the

Euler number). And if you have a mem-

ory like an elephant, you might also re-

call that the logarithm of N to base x –

that is, log_x N – can be calculated by

 dividing log_y N by log_y x.

In the example case, I can calculate

the decimal logarithm of N in Perl as

log(N)/log(10). The length of the num-

ber N is the result of the logarithmic op-

eration rounded down to the nearest in-

teger and then incremented by 1. Note,

though, that because of the sloppy way

that your computer calculates loga-

rithms, it might create a small inaccu-

racy; if the return is something like

10.999999999 instead of 11, you’re in

for an off-by-one error.

Linenum Script
The linenum script(Listing 1) shows one

approach to the problem. This approach

starts by loading the lines of a script read

from a file or from STDIN into the

@lines array. Of course, this only makes

sense for smaller files, but if you write

Perl scripts with more than 100,000

lines, you might want to reconsider your

career options anyway. Perl’s dot opera-

tor (".") builds the format string, giving

something like “%02d %s”.

The neat thing about this interview

question is that it is not just a useless

puzzle that a job candidate might have

heard already or can solve randomly de-

spite the stress of the exam situation. If

the candidate does not immediately see

the way out, the examiner can help and

at the same time discover how the candi-

date reacts to suggestions.

Many solutions are possible, each with

its own benefits and drawbacks. What

happens if you have a 10GB file? Which

01 #!/usr/bin/perl -w

02 use strict;

03

 04 my @lines = <>;

05

 06 my $numlen =

07 length scalar @lines;

08

 09 my $num = 1;

10

 11 for my $line (@lines) {

12 printf "%0" . $numlen

13 . "d %s", $num++, $line;

14 }

Listing 1: linenum

Figure 1: The listing without… Figure 2: …and with aligned line numbers, at the press of a button.

PROGRAMMINGPerl: Vim

77ISSUE 86JANUARY 2008

076-078_perl.indd 77 15.11.2007 16:27:17 Uhr

approach will be fastest? What extra

steps are needed to handle a file with

Unicode characters?

External Perl
How can you do this in Vim – to press a

button and number a complete listing in

one fell swoop? The easiest solution is to

run the lines in a range through the

script as a filter.

A command like :1,$!lineum picks up

all the lines in the edited file (from line

1 to the last line $) and uses STDIN to

send them to the linenum script, which

is executed as an external program

thanks to the exclamation point. Vim

picks up the output from the script and

replaces the original lines with the re-

sults of the filter. The following map

command in .vimrc maps the command

to the L key in normal mode,

:map L :silent U

:1,$!linenum<Return>

assuming that linenum is executable and

in the path for the current shell.

The :silent option suppresses screen

output, helping the command to run

smoothly without Vim outputting status

messages on the console and prompting

the user to confirm. The <Return>

command simulates a Return/ Enter key

press. If you left this out, Vim would fill

the command line and wait for you to

press Enter to confirm.

If you only want to add line numbers

to a section of the document between

marker a and marker b instead of the

whole document, you would define the

area as 'a,'b, rather than 1,$.

Perl Interpreter
Vim also has a built-in Perl interpreter,

but you must configure the feature ex-

plicitly before compiling Vim. Vim

knows at run time whether the Perl in-

terpreter is available and provides this

information via the function has('perl'),

which returns True if Perl exists.

Running this check in your Vim scripts

before use of a Perl function makes sure

that Vim stops with a clearly readable

error message if Perl is missing, instead

of tripping over commands it is unable

to understand.

Vimperl Script
The vimperl script (Listing 2) uses the

Vim scripting language to define a Vim

function called Linenum(), which in-

serts the aligned line numbers into the

file you are editing. Note that Vim insists

that user-defined functions start with an

uppercase letter. If has('perl') tells you

that the Perl interpreter is not installed,

Vim’s :echo command outputs an apol-

ogy at the status line.

Vim’s Perl documentation [3] says that

$curbuf in the Vim Perl interpreter auto-

matically points to the current edit buf-

fer, which contains the lines of the file

you are currently editing. The Count()

method returns the number of lines in

the buffer as an integer.

The for loop that follows iterates

through all of the lines in the current

buffer, using $curbuf->Get($num) to

read each line, where $num represents

the number of the buffer line currently

being processed.

The $curbuf->Set() function then

sends the line, with its shiny new num-

ber, back to the buffer. The function

 expects the line number and the new

content as arguments.

In Vim’s scripting language, comments

start with double quotes and apply to

the end of the current line.

Calling :source vimperl in Vim loads

the vimperl script, but you should either

add it to Vim’s initialization file, .vimrc,

or store it in one of the Vim plugin direc-

tories for production use.

Function!
During testing, it is practical to use

:function! (including the exclamation

point) to define Vim functions, telling

Vim to overwrite the function without

failing if it is already defined. Otherwise,

the load process is canceled and an error

message is displayed.

Within the Vim script, the Perl script

is available in a here document that

starts with <<EOT and ends with EOT.

Note that the final EOT must be at the

start of a line for Perl to recognize the

end of the script.

After :endfunction indicates the end of

the Vim function definition, vimperl calls

:command to define a Linenum com-

mand, which users can call by entering

:Linenum at the Vim command line or

even map to a key. Vim again insists on

the first letter of the user-defined com-

mand being uppercase. The :map L :

Linenum <Return> command maps the

command to the L key in normal mode.

Okay, you know my job interview

tricks now, so I’ll have to think of an-

other question. I’ll be looking for some-

thing just as difficult, but even more

entertaining! �

01 :function! Linenum()

02

 03 :if !has('perl')

04 :echo "Sorry, no Perl!"

05 return

06 :endif

07

 08 perl <<EOT

09 $numlen = length(

10 $curbuf->Count());

11 for $num

12 (1..$curbuf->Count()) {

13 $newline =

14 sprintf "%0.*d %s",

15 $numlen, $num,

16 $curbuf->Get($num);

17 $curbuf->Set($num,

18 $newline);

19 }

20 EOT

21 :endfunction

22

 23 :command! Linenum :call

Linenum()

Listing 2: vimperl

[1] Listings for this article:

http:// www. linux-magazine. com/

 Magazine/ Downloads/ 86

[2] Vim project homepage:

http:// www. vim. org

[3] Vim’s spartan Perl documentation:

http:// www. vim. org/ htmldoc/ if_perl.

 html

INFO

Michael Schilli works

as a Software Devel-

oper at Yahoo!,

Sunnyvale, Cali for -

nia. He wrote “Perl

Power” for Addison-

Wesley and can be

 contacted at mschilli@ perlmeister.

com. His homepage is at

http:// perlmeister. com.

T
H

E
 A

U
T

H
O

R

Perl: VimPROGRAMMING

78 ISSUE 86 JANUARY 2008

076-078_perl.indd 78 15.11.2007 16:27:22 Uhr

