
70

After ripping an old VHS cassette
of my tandem skydive, posting
it on YouTube, and mailing the

link [2] to a couple of guys at work, a
debate about the physical laws that
apply during a parachute jump ensued.

In a simplified model that ignores
crosswinds, the jumper starts with a ver-
tical speed of vy = 0 and immediately
starts to accelerate because of gravity.
Drag, which grows proportionally with
the skydiver’s downward speed, coun-
teracts gravity [3]. Depending on the
skydiver’s weight and proportions, a bal-
ance of forces occurs at around 180 km/
h, and the downward speed becomes
constant. At this point, skydivers feel
like they are floating in space, and this
state continues until the chute opens,
which feels like they are being pulled
upward with a rope.

Free Fall
The skydive script in Listing 1 [4] simu-
lates a parachute jump. An icon dive.png
represents a jumper in free fall. Jumpers
start off slowly and accelerate until they
reach a constant terminal speed (vterm)

of 50 m/ s (180 km/ h). Users can press
the up arrow key to open the chute. At
this point, the icon changes into para.
png, a skydiver with an open chute. The
diver decelerates quickly at first and
then slowly floats down to the ground
(Figures 1-3).

The script counts down the seconds
from jumping to safe landing. The idea
is to pull the ripcord as late as possible
but to make sure the impact speed is less
than 3 m/ s (about 11 km/ h) to avoid in-
jury to the skydiver. The display shows
the elapsed time in seconds on the left,
and the current drop speed in meters per
second on the right. Record times dis-
play below the current counter and they
stay there until a new attempt beats
them. If the player is too fast, the chute
icon turns back into a skydiver without
a chute on the ground to indicate an in-
valid attempt. Of course, a failed attempt
will not change the high-score time (Fig-
ures 4 and 5).

The Physics of Free Fall
The speed of a body accelerating from a
standstill is v = a·t. In the case of a

body jumping out of a plane, the acceler-
ation a is equal to gravity (9.82 m/ s2);
the time t is counted down in seconds
and starts with the jump. The aerody-
namic drag counteracting gravity can
be described as a negative acceleration,
which is zero for vy = 0 and equivalent
to gravity (9.81 m/ s2) for vy = vterm.

Aerodynamic drag is calculated with
reference to mass, speed, and the sky-
diver’s coefficient of friction in the air.
According to “The Free Fall Research
Page” [5], an adult weighing 80 kilo-
grams accelerates to about 190 km/ min
within 14 seconds after jumping and
covers a distance of 548 meters in that
time. After this, the skydiver falls at a
constant speed of 3000 m/ min until the
chute opens.

However, the terminal velocity de-
pends on the flight position. Drag is
lower if the skydiver jumps head down;
speeds of more than 200 km/ h are easily
achieved. More details on calculating
drag are available online [3]. In this situ-
ation, the body is moving at constant
speed because drag counteracts gravita-
tional force. Now the skydiver covers a

Computer game programmers apply physical formulas and special tricks to create realistic animations. Sim-

ple DirectMedia Layer (SDL), which is available as a Perl wrapper, provides a powerful framework for creating

simple 2D worlds with just a couple of lines of code [1]. BY MICHAEL SCHILLI

Skydiving simulation with Perl

FREE FALL

Perl: Skydiving SimulationPROGRAMMING

70 ISSUE 85 DECEMBER 2007

71

distance of s =
v·t in time t at
speed v.

The
Physics of
the Game
In an animated
game that
draws 50 frames
per second, you
do not need to
multiply to cal-
culate a smooth
trajectory for
the figure be-
tween two
frames. Simply
dividing the
speed in meters
per second by
50 and adding
the result to the
current position
gives you the
new position. If
you repeat this
50 times for

every frame, the result at the end of one
second will be exactly s = v·1s, which
matches the physical formula for con-
stant motion.

Because of the relatively short gaps
between the individual frames,
this calculation even works for
the uniformly accelerated mo-
tion of a body falling to earth.
Of course, it is not only the po-
sition of the body that changes
in every frame, but the speed,
too. To allow for this change, I
simply add 1/ 50th of gravity to
the current speed for every
frame. Repeating this 50 times
gives me exactly v = a·1s.

Drag and Drop
To make things worse, accelera-
tion isn’t constant. If the body
drops out of a plane, accelera-
tion is 9.81 m/ s2 if you ignore
effects such as crosswinds and
lift. The greater the speed, the
greater the effect of drag on the
drop and the lower effective
downward acceleration will be.
Once the body has reached a
terminal velocity of vterm, ac-
celeration drops to zero and the

skydiver falls at constant
speed. The game solves this
problem by applying a simpli-
fied method. The decelera-
tion() function calculates a
value that is then subtracted
from the current acceleration.
The value is calculated with
reference to the current and
maximum speeds as a linear
relationship.

When the chute opens, ac-
celeration becomes negative.
However, the chute can’t apply
an arbitrary braking force. The
game limits the maximum
counterforce to 2g. Of course,
what deceleration() does isn’t
exactly accurate, but it is fine
for the game.

Blit the Image
When an icon moves through
the playing field – like the sky-
diver dropping out of the sky,
for example – SDL first deletes
the old entry and then redraws
the image at the new position.
The icon is stored in memory
as an image, and the blit() method just
copies it from one memory position to
another. This trick means that changes
on the gaming screen can occur at an

impressive speed, and
the user has the illusion
of a real world.

The game logo at the
top of the playing area is
a PNG graphic I created
with GIMP. The script
loads the logo.png file
from disk into memory
in line 33 with the SDL::
Surface class constructor.
Line 59 defines an SDL::
Rect class rectangle in-
cluding length, width,
and the position of the
graphic on screen. X co-
ordinates run from left to
right and Y coordinates
from the top down. The
blit() method for the
graphic in $logo in line
65 copies the data to the
playing area, $app.

SDL doesn’t refresh
immediately, though. For
performance reasons,

SDL waits until the pro-
grammer tells it to refresh
by calling update(). This
means that SDL can re-
fresh many rectangles at
the same time, giving the
viewer the impression of
a smooth animation.

Main Loop of Life
Line 7 sets the speed of
the animation to 20 milli-
seconds per frame, which
is equivalent to 50 frames
per second, as reflected in
the $FRAMES_PSEC vari-
able in line 8. The infinite
loop starting in line 93
displays the frames on
screen. To keep time, the
script uses $app->ticks()
to query the number of
milliseconds that have
elapsed since the program
started and stores the re-
sult in the $synchro_ticks
variable.

Another measurement
at the end of the loop de-

termines how many milliseconds have
elapsed between the start and the end of
the loop. If the number is less than 20,
the script has to wait until the allowance
of 20 milliseconds per frame has
elapsed. To insert gaps on a millisecond
scale so that the animation runs
smoothly, you can use select(). If the dif-
ference between the allotted time and
the elapsed time is negative, the calcula-
tions inside the loop have taken longer
than 20 milliseconds and you need to re-
write the script or reduce the frame rate.

While the skydive program is busy
with the main loop, events such as key
presses, mouse moves, or clicks on the
window close button are passed in to the
application. The SDL::Event object de-
fined in line 69 provides the poll()
method, which tells me whether an
event is waiting. event_type() gives me
the event type, for example, SDL_QUIT,
which occurs if the user clicks to close
the application window. In this case, the
script simply terminates with a call to
exit in line 137.

Type SDL_KEYDOWN events indicate
that the user has pressed a key. key_
name in line 142 discovers which key it
was. Fortunately, SDL translates key

Figure 1: The skydiver

accelerates after the

jump and reaches con-

stant speed after a

couple of seconds.

Figure 2: The jumper is

falling at a speed of

40.96 m/ s and isn’t far

from the ground.

Figure 3: The chute

opens and slows the

fall. The skydiver’s

impact speed should

be less than 3.0 m/ s

for a safe landing.

PROGRAMMINGPerl: Skydiving Simulation

71ISSUE 85 DECEMBER 2007

codes to handy strings, returning a value
of right when the right arrow key was
pressed, and q if somebody hit the q key.

The set_key_repeat() method helps han-
dle longer key presses as repeat input
and expects two parameters.

The first parameter specifies how long
a key must be held down to be evaluated
by SDL as continuous fire.

001 #!/usr/bin/perl -w

002 use strict;

003 use SDL;

004 use SDLMove;

005 use SDL::TTFont;

006

007 my $SPEED_MS = 20;

008 my $FRAMES_PSEC =

009 1000.0 / $SPEED_MS;

010 my $VTERM_FREE =

011 50; # Terminal speed

012 my $VTERM_PARA =

013 3; # ... with parachute

014 my $WIDTH = 158;

015 my $HEIGHT = 500;

016 my $G = 9.81;

017 my $MAX_LAND = 3.1;

018

019 my $bg_color =

020 SDL::Color->new(

021 -r => 0,

022 -g => 0,

023 -b => 0

024);

025 my $fg_color =

026 SDL::Color->new(

027 -r => 0xff,

028 -g => 0x0,

029 -b => 0x0

030);

031

032 my $logo =

033 SDL::Surface->new(

034 -name => “logo.png”);

035

036 # Load player icons

037 my $diver =

038 SDL::Surface->new(

039 -name => “dive.png”);

040 my $para =

041 SDL::Surface->new(

042 -name => “para.png”);

043

044 my $app = SDL::App->new(

045 -title => “Skydive 1.0”,

046 -depth => 16,

047 -width => $WIDTH,

048 -height => $HEIGHT

049);

050

051 my $font = SDL::TTFont->new(

052 -name =>

053 “/usr/X11R6/lib/X11/fonts/
TTF/VeraMono.ttf”,

054 -size => 15,

055 -bg => $bg_color,

056 -fg => $fg_color

057);

058

059 my $lrect = SDL::Rect->new(

060 -width => $logo->width,

061 -height => $logo->height,

062 -x => 0,

063 -y => 0

064);

065 $logo->blit(0, $app, $lrect);

066 $app->update($lrect);

067

068 my $event =

069 new SDL::Event->new();

070 $event->set_key_repeat(200,

071 10);

072

073 my $record_time;

074 my $gtime;

075

076 # Next game ...

077 GAME: while (1) {

078

079 my $obj = SDLMove->new(

080 app => $app,

081 bg_color => $bg_color,

082 x => $WIDTH / 2 -

083 $diver->width() / 2,

084 y => $logo->height,

085 image => $diver

086 , # Start with diver

087);

088

089 my $v = 0;

090 my $vterm = $VTERM_FREE;

091 my $start = $app->ticks();

092

093 while (1) { # Frame loop

094 my $synchro_ticks =

095 $app->ticks;

096

097 # Accelerate

098 $v += (

099 $G - deceleration(

100 $v, $vterm

101)

102) / $FRAMES_PSEC;

103

104 # Move player downwards

105 $obj->move(“s”,

106 $v / $FRAMES_PSEC);

107

108 if ($obj->hit_bottom()) {

109 if ($v <= $MAX_LAND)

110 { # soft enough?

111 if (!defined $record_time

112 or $gtime <

113 $record_time)

114 {

115 $record_time = $gtime;

116 }

117 nput($app, 0,

118 $lrect->height + 20,

119 $record_time);

120 } else {

121 $obj->wipe();

122 $obj->image($diver);

123 $obj->move(

124 “s”, # indicate crash

125 $para->height -

126 $diver->height

127);

128 }

129 sleep 5;

130 $obj->wipe();

131 next GAME;

132 }

133

134 # Process all queued events

135 while ($event->poll != 0) {

136 my $type = $event->type();

137 exit if $type == SDL_QUIT;

138

139 if ($type == SDL_KEYDOWN)

140 {

141 my $keypressed =

142 $event->key_name;

143

Listing 1: skydive

Perl: Skydiving SimulationPROGRAMMING

72 ISSUE 85 DECEMBER 2007

The second parameter specifies the
gap between rounds of fire, again in mil-
liseconds. If you want to add a function
to move the skydiver to the left or right,
this ability would help.

When a user presses the up arrow key,
this is the signal to open the chute, and
the elsif condition in line 152 triggers
two actions. The terminal velocity
$VTERM is reduced from $VTERM_FREE
to $VTERM_PARA. The image() method
for the player object, $obj, sets the
player icon to $para, the parachute icon.

Valid key presses include r for restart
(abort current jump and perform a new
one), and q for quit. The left and right
arrow keys are defined to let players
move the skydiver left or right, which
can be used to extend the game.

The variable $gtime holds the time of
the current round, and $record_time ac-
cepts a new value if the player achieves
a new record time, but without too hard
a landing. The application itself is repre-
sented by the SDL::App type object
$app, a class derived from SDL::Surface.

Drawing actions in the application
window or refreshes of modified
rectangles use the $app object.

To simplify the process of moving
the player icon, the SDLMove.pm
module in Listing 2 [4] defines a
couple of auxiliary functions. The
image() method draws the player
icon on the specified SDL::Surface
type object.

The SDLMove module knows the
dimensions of the app, so it can pro-
vide hit_bottom() to tell whether the
player has reached the bottom edge
of the field, indicating the round is
over. The wipe() method removes
the player icon from the field in one
fell swoop, for example, to change
a failed skydiver into a free-falling
icon at the bottom of the screen,
showing that the player messed
things up. The move() method
moves the figure by the specified
number of pixels in a specific direc-
tion (n = north, s = south, w =
west, e = east). The parameters can

144 if (

145 $keypressed eq “left”)

146 {

147 $obj->move(“w”, 0.1);

148 } elsif (

149 $keypressed eq “right”)

150 {

151 $obj->move(“e”, 0.1);

152 } elsif (

153 $keypressed eq “up”)

154 {

155

156 # deploy parachute

157 $vterm = $VTERM_PARA;

158 $obj->image($para);

159 } elsif (

160 $keypressed eq “r”)

161 {

162 $obj->wipe();

163 next GAME;

164 } elsif (

165 $keypressed eq “q”)

166 {

167 exit 0; # quit

168 }

169 }

170 }

171 $gtime =

172 ($app->ticks - $start) /

173 1000.0;

174

175 nput($app, 0,

176 $lrect->height, $gtime);

177 nput($app, 110,

178 $lrect->height, $v);

179

180 my $wait = $SPEED_MS -

181 ($app->ticks -

182 $synchro_ticks);

183 select undef, undef, undef,

184 $wait / 1000.0

185 if $wait > 0;

186 }

187 }

188

189 #############################

190 sub deceleration {

191 #############################

192 my ($v, $vterm) = @_;

193

194 my $d = $v / $vterm * 9.81;

195

196 $d = 0 if $d < 0;

197 $d = 2 * $G if $d > 2 * $G;

198

199 return $d;

200 }

201

202 #############################

203 sub nput {

204 #############################

205 my ($app, $x, $y, $number) =

206 @_;

207

208 my $rect = SDL::Rect->new(

209 “-height” => $font->height,

210 “-width” =>

211 $font->width($number),

212 “-x” => $x,

213 “-y” => $y

214);

215

216 $app->fill($rect,

217 $bg_color);

218 my $string =

219 sprintf “%-5.2f”, $number;

220 $font->print($app, $x, $y,

221 $string);

222 $app->sync();

223 }

Listing 1: skydive

Figure 4: Here is a

safe landing at 3.0

m/ s and the player

set a new record of

17.60 seconds.

Figure 5: Good time,

but it doesn’t count

because the impact

speed was 45.33 m/ s –

far too fast!

Perl: Skydiving SimulationPROGRAMMING

74 ISSUE 85 DECEMBER 2007

contain pixel fractions that will not af-
fect the current movement but will be
accumulated by the script for future ac-
tions. Before moving the player icon,
SDLMove deletes the old image to proj-
ect a smooth movement onto the screen.

Configuration
Back in Listing 1, $VTERM_FREE speci-
fies a terminal velocity in free fall of 50
m/ s. $VTERM_PARA sets the drop rate
of 3 m/ s for the chute, which the chute
will achieve after some time gliding. In
the section following line 7, you can
change these values and some other pa-
rameters, such as the height and width
of the animation window.

To be able to display text on screen,
the SDL::TTFont module juggles with
True Type fonts; the module renders text
strings and helps drop them on the play-
ing field.

The constructor called in line 51 loads
the fixed font VeraMono, which is stored
in the TTF subdirectory below my X
server’s font directory. On Debian sys-
tems, the font path is different, and you

will need to add /usr/share/fonts/tru-
etype/ttf-bitstream-vera/VeraMono.ttf.
Also note that Debian systems come
with a broken SDL Perl wrapper. The
downloadable version of the script con-
tains the necessary adjustments to com-
pensate for this flaw.

The -fg and -bg options set the font
color to red on a black background. The

print() method handles rendering and
displays the text at coordinates $x, $y on
the playing field. Like the rectangles re-
ferred to previously, SDL does not re-
fresh the display directly after a print
command but waits for the programmer
to sync() the $app object.

If one call overwrites the same posi-
tion with new text, the original display
is kept, and after a number of iterations,
the numeric field is jumbled. The nput
function defined in line 203 determines
the size of the rendered text string and
defines an enclosing rectangle, then
paints the rectangle black to allow the
print() function to write over it.

Installation
SDL is included with most popular Linux
distributions; if not, you will need to in-
stall the SDL, SDL-devel, SDL_ttf, SDL_
ttf-devel, and SDL_mixer packages. Then
complete the install of the Perl wrapper
and the necessary SDL modules by call-
ing install SDL_perl in a CPAN shell.

Install all of the aforementioned librar-
ies before installing SDL_Perl or you will

the mathematics of humour
TWELVE Quirky Humans,

TWO Lovecraftian Horrors,
ONE Acerbic A.I.,

ONE Fluffy Ball of Innocence and
TEN Years of Archives

 EQUALS
ONE Daily Cartoon that Covers the
 Geek Gestalt from zero to infinity!

Over Two Million Geeks around the world can’t be wrong!
COME JOIN THE INSANITY!

PROGRAMMINGPerl: Skydiving Simulation

75ISSUE 85 DECEMBER 2007

[1] SDL wrapper for Perl:
http:// arstechnica. com/ guides/ tweaks/
games-perl. ars

[2] YouTube video showing the
Perlmeister skydiving: http:// youtube.
com/ watch?v=aRxvsSs0sz4

[3] Drag: http:// en. wikipedia. org/ wiki/
Drag_(physics)

[4] Listings and Icons: http://www.linux-
magazine.com/Magazine/Down-
loads/85

[5] “Free Fall – Falling Math”: http:// www.
greenharbor. com/ fffolder/ math. html.
Green Harbor Publications, 2005.

[6] Frozen Bubble:
http:// www. frozen-bubble. org

INFO

be missing True Type font support. The
three icons – logo.png, dive.png, and
para.png – are available online [4]. The
script will look for the icons below the
current directory when launched and
complain if it can’t find them.

Extensions
With just a couple of lines of Perl code,
you could easily extend the game. If you

are interested in more tips from experts,
I suggest that you take a look at the Fro-
zen Bubble game [6] source code. Fro-
zen Bubble includes professional anima-
tions and was written with SDL_Perl.

To add more realism to the skydiving
prototype, you could allow the skydiver
to jump from a plane moving at a certain
horizontal speed. In this case, the sky-
diver would move laterally at a constant

speed with drag counteracting the move-
ment. The aim of the game would be to
achieve a soft landing and to hit a target
on the ground or to avoid water or
power lines.

The skydiver could slowly maneuver
after opening the chute. Also, you could
add a crosswind to make things more
difficult and use SDL_mixer to generate
sound effects. ■

001 package SDLMove;

002 use strict;

003 use warnings;

004 use SDL;

005 use SDL::App;

006

 007 #############################

008 sub new {

009 #############################

010 my ($class, %options) = @_;

011

 012 my $self = {%options};

013 bless $self, $class;

014

 015 $self->image(

016 $self->{image});

017 return $self;

018 }

019

 020 #############################

021 sub image {

022 #############################

023 my ($self, $image) = @_;

024

 025 $self->{image} = $image;

026 $self->{drect} =

027 SDL::Rect->new(

028 -width => $image->width,

029 -height => $image->height,

030 -x => $self->{x},

031 -y => $self->{y},

032);

033 }

034

 035 #############################

036 sub move {

037 #############################

038 my ($self, $direction,

039 $pixels)

040 = @_;

041

 042 my $rect = $self->{drect};

043 my $app = $self->{app};

044

 045 if ($direction eq "w")

046 { # left

047 $self->{x} -= $pixels

048 if $self->{x} > 0;

049

 050 } elsif ($direction eq "e")

051 { # right

052 $self->{x} += $pixels

053 if $self->{x} <

054 $app->width -

055 $rect->width;

056

 057 } elsif ($direction eq "n")

058 { # up

059 $self->{y} -= $pixels

060 if $self->{y} > 0;

061

 062 } elsif ($direction eq "s")

063 { # down

064 $self->{y} += $pixels

065 if $self->{y} <

066 $app->height -

067 $rect->height;

068 }

069

 070 $self->{old_rect} =

071 SDL::Rect->new(

072 -height => $rect->height,

073 -width => $rect->width,

074 -x => $rect->x,

075 -y => $rect->y,

076);

077

 078 $rect->x($self->{x});

079 $rect->y($self->{y});

080 $app->fill(

081 $self->{old_rect},

082 $self->{bg_color}

083);

084

 085 $self->{image}

086 ->blit(0, $self->{app},

087 $rect);

088 $app->update(

089 $self->{old_rect}, $rect);

090 }

091

 092 #############################

093 sub wipe {

094 #############################

095 my ($self) = @_;

096

 097 $self->{app}->fill(

098 $self->{drect},

099 $self->{bg_color}

100);

101 $self->{app}

102 ->update($self->{drect});

103 }

104

 105 #############################

106 sub hit_bottom {

107 #############################

108 my ($self) = @_;

109

 110 return $self->{y} >

111 $self->{app}->height -

112 $self->{drect}->height;

113 }

114

 115 1;

Listing 2: SDLMove.pm

Perl: Skydiving SimulationPROGRAMMING

76 ISSUE 85 DECEMBER 2007

