
74

In the beginning was the ASCII table
– 128 characters that let users com-
pose English-language texts, includ-

ing a couple of foreign characters that
were on any typewriter, such as % or $,
and of course a couple of control charac-
ters, such as line break, page feed, or the
bell. It was just a matter of time until
non-English speakers started looking for
ways to add the accented characters and
umlauts their native languages needed,
and the first approach was to squash
them into the next group of 128 charac-
ters. All 256 characters were numbered 0
through 255 and encoded on computers
with 8 bits (1 byte) of data.

This was the birth of the ISO 8859
standard (also known as Latin 1).

Different Languages
It all started with ISO-8859-1, but over
the course of time other variants were
added until the current count reached
ISO-8859-15, which also includes the
Euro character. Incidentally, most of to-
day’s web browsers do not use the ISO-
8859-1 standard to decode ISO-8859-1
content sent by web servers. Instead, the
browsers rely on the Windows-1252
standard, which includes a couple of
extra characters, such as the Euro char-
acter. Of course, the rest of the world

didn’t want to get left behind, and the
race to display far more complex charac-
ter sets was on.

Encoding schemes for Asian lan-
guages, such as Shift-JIS and BIG5, were
invented. But developers soon realized
that this was getting them nowhere, and
Unicode, an enormous table containing
all the characters of common languages
in the world, was invented.

UTF 8
The UTF 8 standard provides one ap-
proach to encoding the Unicode table ef-
fectively on a computer. If the sudden
need had arisen to encode legacy ASCII
characters with 2 or 4 bytes throughout,
memory requirements would have sky-
rocketed. To retain the ability to render
the legacy ASCII table with a single byte,
the UTF 8 table was designed so that the
first 128 characters are exactly the same
as the ASCII table.

When foreign characters occur in program code or data, Perl

programmers need a solution that avoids the tribulations of Babel.

BY MICHAEL SCHILLI

Organizing character and code sets

ALPHABET SOUP

Perl: Character Sets PROGRAMMING

74 ISSUE 81 AUGUST 2007 W W W. L I N U X- M A G A Z I N E . C O M

75

However, the next group of 128 char-
acters is made up of special masking
codes that indicate that a specific num-
ber of additional codes follow to
uniquely identify which character in the
Unicode table to display. For example,
the German umlaut (ü) is stored as num-
ber 252 (0xFC) in the ISO-8859-15 table.
If you have an ISO-8859-15 text that con-
tains a byte with a value of 0xFC, the
character is obviously a ü.

A With a Wavy Line
In UTF 8 encoding, the umlaut ü is rep-
resented by 2 bytes – 195 and 188 (0xC3
and 0xBC). If you have a UTF 8 text and
the computer first sees a byte value of
0xC3 followed by 0xBC, it is equally as
clear that this must be the letter ü.

On the other hand, if the encoding is
unclear and the computer sees a byte
with a value of 0xC3, the question is
whether this is the first byte of a Western
European umlaut in UTF 8 format, or
whether it is an ISO-8859-15-encoded
byte that represents a complete charac-
ter. If the introductory byte, 0xC3, in a
UTF 8 sequence is incorrectly interpreted
as ISO-8859-15, a character that can
be the bane of programmers who wan-
der between the encoding worlds is
displayed – an A with a wavy line.

This character, which is shown in Fig-
ure 1, occurs in Portuguese, Vietnamese,
or Kashubian writing [2]. If these lan-
guages are outside your typical domain,
but you see an A with a wavy line, you
are probably looking at UTF 8-encoded
text that has mistakenly been interpreted
as ISO-8859-15.

Terminal Display
If you want your terminal to display the
text output from a program on screen,
the terminal needs to know how to inter-
pret the bytestream output by the pro-
gram to locate the right characters for
the display.

To launch an X terminal with UTF 8
output, you could run xterm with the -u8
+lc options. The -u8 option enables UTF
8, and +lc disables the interpretation of
environmental variables, such as LANG,
to prevent them interfering.

To launch a terminal in ISO-8859-15
mode, run xterm with the LANG envi-
ronment variable set:

LANG=en_US.ISO-8859-15 xterm

Figures 1 and 2 show the output from
two Perl scripts in an ISO and a UTF 8
terminal, respectively. A single byte with
a value of 0xFC is correctly interpreted
as ü by the red ISO terminal.

However, the UTF 8 sequence 0xC3BC
is rendered as an A with a tilde and the

ISO representation of 0xBC, which is the
1/ 4 character.

In contrast, the green UTF 8 terminal
does not display a single byte with a
value of 0xFC, but the UTF 8 0xC3BC
sequence displays a ü as expected.

Latin as the Standard Case
Unless you tell Perl to do otherwise, it
will interpret the source code of a script,
including any strings, regular expres-
sions, variables, and function names,
as ISO-8859-1 encoded.

If you use an editor set to ISO-8859-1
to program the code in Listing 1, the ü
in the program text will be rendered by a
code of 0xFC, as the hexdump utility
goes on to prove (Figure 3).

In contrast, Listing 2 was created in
the vim editor with a setting of set
encoding=utf-8. The red markings in the
hexdump screen in Figure 3 show that
the umlaut in the string in the program
code really has been encoded by two
bytes: C3 and BC.

You might have noticed the two extra
lines shown in Listing 2. First, I set the
pragma use utf8 to tell Perl to interpret
the source code of the script as UTF 8.
This ensures that the string "ü", which
is represented by 0xC3BC in the source
code, holds a single character – the
Unicode character ü. Reflecting this,
length($s) won't return a value of 2,
but just 1.

Figure 1: In a terminal set to ISO-8859-15, Latin 1 output is fine, but

output in UTF 8 looks like Kashubian.

Figure 2: In a terminal set to UTF 8, UTF 8 output works fine, but

ISO-8859-15-encoded characters are not displayed.

1 #!/usr/bin/perl -w

2 use strict;

3 my $s = "ü";

4 print "umlaut=$s", "\n";

Listing 1: latin1

1 #!/usr/bin/perl -w

2 use strict;

3 use utf8;

4 my $s = "ü";

5

 6 binmode STDOUT, ":utf8";

7 print "umlaut=$s", "\n";

Listing 2: utf8

Figure 3: A Perl script written in ISO-8859 will use a code of 0xFC to represent the ü in the

source code. If the source code is written in UTF 8, the ü is represented by a byte sequence of

0xC3BC instead.

PROGRAMMINGPerl: Character Sets

75ISSUE 81 AUGUST 2007W W W. L I N U X- M A G A Z I N E . C O M

Next, Listing 2 sets the line discipline
for standard output to UTF 8 mode by
calling binmode(STDOUT, ":utf8"). This
makes sure that Perl will output Unicode
strings to standard output in UTF 8 for-
mat and, thus, that the terminal will re-
ceive the UTF 8 data it expects and ren-
der it properly. Without the call to bin-
mode, Perl would attempt to convert the
output string to Latin 1. This makes
sense for an ISO-8859-1 terminal, but it
is exactly what you want to avoid with a
UTF 8 terminal.

And things go completely wrong if the
Unicode character cannot be converted
to Latin 1, such as the Japanese
Katakana character “me,” which has a
Unicode number of 30E1. In this case,
you see a “Wide character in print”
warning. The use of binmode(STDOUT,
":utf8") to set the line discipline for the
output file handle prevents Perl from try-
ing to convert the Unicode string and
tells it to output raw UTF 8 instead.
If you have a UTF 8 terminal, this is
exactly the strategy you need.

Reference
The man iso-8859-1 man page details
Latin 1 standard encoding. If you refer to
the octal number 374, or the hex value
of FC, you will see an entry for LATIN
SMALL LETTER U WITH DIAERESIS, or
the umlaut ü.

If you need to refer to the Unicode
table, the unicore/UnicodeData.txt file,

below lib in your Perl distribu-
tion (typically ls/usr/lib/perl5/
5.8.x), is where to look. Again,
you will find an entry for the
number 00FC: LATIN SMALL
LETTER U WITH DIAERESIS.

If you look carefully at Figure
4, you will notice that the se-
quence number for the small ü

in the Unicode table corresponds to the
number for the small ü in the ISO-8859-1
table. It is FC in both cases (FC in ISO-
8859-1 and 00FC in Unicode) because
the creators of the Unicode table mod-
eled the first 256 bytes following the
ISO-8859-1 standard.

Note that the Unicode number does
not represent the UTF 8 encoding of the
character. For example, ü, the Unicode
character with the number 00FC, is rep-
resented as C3BC in UTF8. As I men-
tioned previously, UTF 8 is just a more
efficient approach to encoding the Uni-
code table.

Keyboard without Foreign
Characters
If you have a keyboard with umlauts
(like the one I use in San Francisco), it is
easy to type a ü in a string by entering
its Unicode number (Figure 5):

my $s = "\x{00FC}";

As an alternative, some editors support
keyboard shortcuts. The keyboard short-
cut for a lowercase ü in the vim editor’s
input mode is Ctrl+k u:. Here, note that
vim is set to UTF 8 via set
encoding=utf-8.

In and Out
When a Perl program reads or outputs
data, the programmer has to specify the
input or output format for the data. To

read the lines in
a UTF 8-en-
coded text file,
you can either
resort to the bin-
mode trick I
demonstrated
previously to set
the FILE filehan-
dle to :utf8 or
set the line dis-
cipline using an
open command
with three pa-

rameters: open FILE, "<:utf8", "file.txt"
… . If the program then reads a line of
the file with <FILE> and assigns the re-
sults to a scalar, you can be sure that the
string is a Unicode string, and Perl will
make a note of this fact internally.

Without line discipline, the input
would be interpreted as ISO-8859-1, and
Perl would cram the raw bytes into a
string scalar without marking it as UTF
8. The same principle applies to output.
A >:utf8 or >>:utf8 as the second pa-
rameter with open sets the line discipline
for the output to UTF 8 mode, and a
print FILE $string will output the UTF
8-encoded string without modifications.
As an alternative, you could use bin-
mode to modify the filehandle.

Dropping the Last Veil
Listing 3 shows how Perl manages Uni-
code strings internally. Because of the
use utf8 pragma that I previously set, the
"ü" string (the one that I input in UTF 8
with vim) is identified and managed as a
Unicode string.

To allow this to happen, Perl set an
internal flag, which you can query
(is_utf8()) and manipulate (_utf8_off())
using the Encode module.

01 #!/usr/bin/perl -w

02 use strict;

03 use utf8;

04 use Data::Hexdumper;

05 use Encode qw(_utf8_off is_
utf8);

06

 07 my $s = "ü";

08

 09 if(is_utf8($s)) {

10 print "UTF-8 flag^^is
'on'.\n";

11 }

12

 13 print "Len: ", length($s), "\
n";

14 _utf8_off($s);

15 print "Len: ", length($s), "\
n";

16

 17 print hexdump(data => $s), "\
n";

Listing 3: peek

Figure 4: The entry for ü in Perl’s Unicode table.

Figure 5: With a keyboard that has an umlaut, it is easy to type an

umlaut in a string by entering its Unicode number,

Perl: Character Sets PROGRAMMING

76 ISSUE 81 AUGUST 2007 W W W. L I N U X- M A G A Z I N E . C O M

[1] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 81

[2] “The Mystery of the Double-Encoded
UTF8”: http:// blog. 360. yahoo. com/
blog-8_S91Lc7dKj4rz8iueEaVlexawc_
ZFVpd4JK?p=16

[3] Windows-1252: http:// en. wikipedia.
org/ wiki/ Windows-1252

[4] Known LWP bug in UTF 8-encoded
web pages: http:// www. mail-archive.
com/ libwww@perl. org/ msg06330.
html

INFO

01 #!/usr/bin/perl -w

02 use strict;

03 use LWP::UserAgent;

04

 05 my $ua = LWP::UserAgent->new(

06 parse_head => 0

07);

08

 09 my $resp = $ua->get(

10 "http://perlmeister.com/cgi/
isotest.cgi");

11

 12 if($resp->is_success()) {

13 my $text = $resp->decoded_
content();

14 binmode STDOUT, ":utf8";

15 print "$text\n";

16 }

Listing 6: webclient

01 #!/usr/bin/perl -w

02 use strict;

03 use CGI qw(:all);

04

 05 print header(

06 -type => 'text/html',

07 -charset => 'utf-8');

08

 09 binmode STDOUT, ":utf8";

10 print "The Euro sign is ",

11 "\x{20AC}.\n";

Listing 5: isotest2.cgi

The output from peek in Figure 6
shows that the UTF 8 string really has a
length of 1. If you delete the flag by set-
ting _utf8_off(), the length of the string
suddenly grows to two characters.

The output from the CPAN Data::Hex-
dumper module shows that the string is
now stored internally as 0xC3BC – and,
presto, that really is UTF 8.

Listing 4 shows how a CGI script
promises the browser ISO-8859-1-en-
coded text but then sends a Euro charac-

ter with a code
of 0x80, which
complies with
the Windows-
1252 standard
[3]. As you can
see in Figure 7,
the browser gen-
erously agrees to
display the Euro
character.

If the server
script were to
specify ISO-
8859-15 in its

header, you would
see a black question
mark instead of the
Euro sign in the
browser’s rendering
of the page.

The Euro sign has
a code of 0xA4 in
the ISO-8859-15
table. If the code is modified to reflect
this, the browser again displays the Euro
sign correctly.

Not So Generous
Perl’s web-client library, LWP, is not so
generous. Listing 5 shows an example
that outputs text as UTF 8 and even sets
the response header correctly.

The Euro character in the string is rep-
resented by its Unicode serial number
\x{20AC} in the string. However, there
are a number of things to watch out for
on the client side of the web application,
if the web page text is UTF 8-encoded
server-side. The idea is to use the LWP
library to retrieve the page from the web
server and, if everything works out okay,
to store a Unicode string in Perl. Listing
6 shows the approach.

Because of a known bug in the LWP
library (or in HTML::HeadParser, to be
more precise), Perl throws a nasty Pars-
ing of undecoded UTF-8 will give garbage
when decoding entities warning when

UTF 8 is returned, although you should
be able to avoid this by setting the
parse_head => 0 option in the call to
the UserAgent‘s constructor [4].

To allow Perl to store the returned UTF
8 text in a Unicode string, you need to
avoid using the typical content() method
to extract the text for the page from the
HTTP::Response object and rely on de-
coded_content() instead.

This method uses the charset field in
the the web server's response to figure
out how to decode content. As long as
the client continues to honor the line
discipline for STDOUT, there is nothing
to prevent correct rendering in a termi-
nal set to UTF 8 mode.

Conclusions
Wandering between the encoding worlds
has always been a problem. But if you
prefer not to restrict availability of your
software to a fraction of the market, it
makes sense to work hard on an interna-
tionalization strategy. ■

Figure 7: The browser shows the Euro character.

Michael Schilli works
as a Software Devel-
oper at Yahoo!,
Sunnyvale, Califor-
nia. He wrote “Perl
Power” for Addison-
Wesley and can be
contacted at mschilli@perlmeister.
com. His homepage is at
http://perlmeister.com.

T
H

E
 A

U
T

H
O

R

01 #!/usr/bin/perl -w

02 use strict;

03 use CGI qw(:all);

04

 05 print header(

06 -type => 'text/html',

07 -charset => 'iso-8859-1');

08

 09 print "The Euro sign is ",

10 chr(0x80), ".\n";

Listing 4: isotest.cg

Figure 6: In a Unicode

string, a multi-byte

character really has a

length of 1. If you

remove the Unicode

property from the

string, Perl will inter-

pret it bytewise.

Perl: Character Sets PROGRAMMING

78 ISSUE 81 AUGUST 2007 W W W. L I N U X- M A G A Z I N E . C O M

