
72

Regular readers will recall that
last month’s Perl column relied
on X10 technology to transmit

switching signals over normal power
lines at home. In this article, I will ex-
tend the scenario to include three new
devices with X10 receivers: my DSL
modem (Figure 1), my DSL router, and
my TiVo digital video recorder. The
lights in the bedroom and living room
are already connected to X10 boxes.

Figure 2 shows the results of running
the scripts in this article. As you can see,
the browser displays intuitive names for
the devices in question, and a button in
the right-hand column of the table for
each row lights up green or red, depend-
ing on the current device status. Clicking
the button toggles the device state. This
all relies on state-of-the-art Ajax technol-
ogy – the browser does not need to re-
load the whole web page, just single
fields that have changed.

Every X10 device is set to a unique
house and unit code that I can use to ad-
dress the device via the power line.
Users normally prefer to avoid having to
memorize cryptic combinations of letters

and numbers, which is why the /etc/x10.
conf file (Listing 1) defines the accessible
X10 devices in YAML format (“YAML
Ain’t Markup Language,” a data serial-
ization language modeled on XML).

My low-budget router has just crashed, and there is no way to reset the

beast remotely via a network. Never fear – an X10 module, controlled

by a web GUI with an Ajax interface, can actuate the mains switch.

BY MICHAEL SCHILLI

A remote control to reset your router

HOME SWITCHER

J
o
ellen

 A
rm

stro
n

g
, Foto

lia
Perl: X10 ModulePROGRAMMING

72 ISSUE 78 MAY 2007 W W W. L I N U X- M A G A Z I N E . C O M

01 # x10.conf Configuration File

02

03 - device: dslmodem

04 code: K4

05 name: DSL Modem

06

07 - device: bedroom

08 code: K9

09 name: Bedroom Lights

10

11 - device: office

12 code: K10

13 name: Office Back Light

14

15 - device: dslrouter

16 code: K14

17 name: DSL Router

18

19 - device: tivo

20 code: K13

21 name: TiVo

22

23 - device: livingroom

24 code: K1

25 name: Living Room Lights

Listing 1: x10.conf

73

A dash at the start of a name in YAML
means “this is an array element.” In con-
trast, the colon notation separates the
key/ value pairs in a hash.

The configuration that is detailed in
Listing 1 thus defines an array of devices
wherein each device is represented by a
hash that specifies values for the device
name, the house/ unit code, and an intui-
tive name in the device, code, and name
keys, respectively.

The script in Listing 2 allows us to ad-
dress specific devices at the command
line via their mnemonic names – that is,
to switch the devices on or off or to
query their status:

myx10 dslmodem on
myx10 dslmodem status
on

Cheap Trick
Unfortunately, low-budget X10 modules
only support unidirectional communica-
tions. You can control them, but you can
not query their status. However, if you
exclusively use the script to control the
modem, the script will use a persistent
DBM file to remember whether the re-
ceiver is switched on or off.

Of course, this can be confusing if you
manually switch the device on or off
without using the software, but you can
easily resolve this issue by using the web
GUI to switch the device on or off again,
thereby returning everything back to a
known state.

In Listing 3, myx10 relies on the
MyX10.pm module, which then starts by
first setting the baud rate and the serial

interface for com-
munications with
the X10 transceiver,
just as in last
month’s column. It
then uses dbmo-
pen() to set up a
persistent DB_File-
type DBM file in /
var/local/myx10.db
to store the as-
sumed switching
status of the device
with the matching
device key.

The DESTROY()
method shown in
line 56 closes the
DBM file when the

MyX10 object is destroyed.

Unordered Hashes
If you simply wanted to test whether a
specified device exists or to access the
house/ unit code via the device mne-
monic, it would make sense to store /etc/
x10.conf in a hash. However, a hash will
not keep the order we originally defined,
and this order is important for rendering
the device list in the browser.

Therefore, lines 36-38 in Listing 3 con-
vert the YAML array into a hash with
keys that represent the device names,
which have the YAML device hashes as
values. The instance variable devhash
stores a reference to this data structure
for quick lookups. Lines 45-50 iterate
over all the entries and set the persistent
states for any previously untouched de-
vices to off. This needn’t be true, but if
not, the next state change will bring the
X10 receiver back in line with the then
newly saved state.

The send() method talks to the X10
transceiver attached to my Linux box to
transmit a command to the X10 receiver
specified by the device name. Valid com-
mands are on and off. On a status com-
mand, line 86 will jump to the status()

method defined further down to pull the
assumed status of the X10 receiver out of
the hat, er, data store.

Between initializing the serial port and
calling X10, MyX10.pm sleeps for a sec-
ond with sleep(1). The need for this is
unknown, but before I put the break in,
strange X10 timing-control problems
kept occurring.

Sudo Without a Password
Only the root user is permitted to send
X10 signals via the serial port, which is
why myx10 has to run as root. If you in-
tend to control devices via a web GUI,
security concerns call for the web server
to run as nobody, instead of root, which
is asking for trouble.

The following entry in /etc/sudoers
gives you a workaround, opening up a
small hole that lets the web server run
the myx10 script as root via sudo with-
out requiring a password:

/etc/sudoers
nobody ALL= U
NOPASSWD:/usr/bin/myx10

The ALL keyword to the left of the
equals sign specifies no restriction to
specific host names. The command
following the colon restricts permitted
activities to the specified script. This
means that, should an attacker manage
to compromise your web server, they
would be able to switch X10 devices on

PROGRAMMINGPerl: X10 Module

73ISSUE 78 MAY 2007W W W. L I N U X- M A G A Z I N E . C O M

Figure 1: The DSL modem’s power cord is plugged into an X10

receiver, allowing me to switch it on and off remotely, if necessary.

Figure 2: The interactive browser application

controls multiple X10 devices at the push of

a button via an intuitive GUI.

01 #!/usr/bin/perl -w

02 use strict;

03 use MyX10;

04 my($device, $command) = @ARGV;

05 my $x10 = MyX10->new();

06 $x10->send($device, $command);

Listing 2: myx10

and off, but they would not be able to
compromise the root account on the
Linux machine. As an alternative, you
could avoid the sudo trick by running

chmod a+rw /dev/ttyS0 to let everyone
on the machine use the serial port.

The myx10.cgi CGI (Listing 4) simply
calls the myx10 command-line script and

sends the script’s output back to the web
client. To do so, myx10.cgi uses the tap
function from the Sysadm::Install CPAN
module, which basically gives us a con-

001 #############################

002 package MyX10;

003 #############################

004 use strict;

005 use warnings;

006 use Device::SerialPort;

007 use ControlX10::CM11;

008 use YAML qw(LoadFile);

009 use Log::Log4perl qw(:easy);

010 use DB_File;

011

 012 #############################

013 sub new {

014 #############################

015 my ($class, %options) = @_;

016

 017 LOGDIE "You must be root"

018 if $> != 0;

019

 020 my $self = {

021 serial => "/dev/ttyS0",

022 baudrate => 4800,

023 devices => LoadFile(

024 "/etc/x10.conf"),

025 commands => {

026 on => "J",

027 off => "K",

028 status => undef,

029 },

030 dbm => {},

031 dbmfile =>

032 "/var/local/myx10.db",

033 %options,

034 };

035

 036 $self->{devhash} =

037 { map { $_->{device} => $_

038 } @{ $self->{devices} } };

039

 040 dbmopen(%{ $self->{dbm} },

041 $self->{dbmfile}, 0644)

042 or LOGDIE

043 "Cant open $self->{dbmfile}";

044

 045 for (

046 keys %{ $self->{devhash} })

047 {

048 $self->{dbm}->{$_} ||=

049 "off";

050 }

051

 052 bless $self, $class;

053 }

054

 055 #############################

056 sub DESTROY {

057 #############################

058 my ($self) = @_;

059 dbmclose(%{ $self->{dbm} });

060 }

061

 062 #############################

063 sub send {

064 #############################

065 my ($self, $device, $cmd) =

066 @_;

067

 068 LOGDIE(

069 "No device specified")

070 if !defined $device;

071

 072 LOGDIE("Unknown device")

073 if !

074 exists $self->{devhash}

075 ->{$device};

076

 077 LOGDIE(

078 "No command specified")

079 if !defined $cmd;

080

 081 LOGDIE("Unknown command")

082 if !

083 exists $self->{commands}

084 ->{$cmd};

085

 086 if ($cmd eq "status") {

087 print $self->status(

088 $device), "\n";

089 return 1;

090 }

091

 092 my $serial =

093 Device::SerialPort->new(

094 $self->{serial}, undef);

095

 096 $serial->baudrate(

097 $self->{baudrate});

098

 099 my ($house_code, $unit_code)

100 = split //,

101 $self->{devhash}

102 ->{$device}->{code}, 2;

103

 104 sleep(1);

105

 106 # Address unit

107 DEBUG "Addressing ",

108 " HC=$house_code",

109 " UC=$unit_code";

110 ControlX10::CM11::send(

111 $serial,

112 $house_code . $unit_code);

113

 114 DEBUG

115 "Sending command $cmd ",

116 "$self->{commands}->{$cmd}";

117 ControlX10::CM11::send(

118 $serial,

119 $house_code

120 . $self->{commands}

121 ->{$cmd}

122);

123

 124 $self->{dbm}->{$device} =

125 $cmd;

126 }

127

 128 #############################

129 sub status {

130 #############################

131 my ($self, $device) = @_;

132 return $self->{dbm}

133 ->{$device};

134 }

135

 136 1;

Listing 3: MyX10.pm

Perl: X10 ModulePROGRAMMING

74 ISSUE 78 MAY 2007 W W W. L I N U X- M A G A Z I N E . C O M

venient way of capturing the output
from a command.

However, if the browser calls myx10.
cgi without passing in any device param-
eters, the web client will want to see the
overview shown in Figure 2. To allow
this to happen, myx10.cgi loads the X10
configuration file and then calls the tem-
plate toolkit processor to render the
myx10.tmpl template (Figure 3). At this
point, a foreach loop ensures that a col-
umn with a button is drawn for every
configured device.

The onClick action for each button
calls the toggle() Javascript function de-
fined later in myx10.js, not only to han-
dle server communications, but also to
change the button color to match the
results. The id for each button is set to
the device name, and class is set to
"clicker" to allow a Javascript function
to iterate over all elements tagged in this
way later.

YUI
Modern web applications no longer re-
load whole pages when a user presses a
button. Instead, web server communica-
tions are handled asynchronously via
Ajax, and only those elements that have
changed are redrawn. Because Ajax is
fairly difficult to program and excessive

use of Javascript
can cause hair loss,
a number of Javas-
cript libraries sim-
plify this task and
guarantee browser
compatibility at the
same time. One ex-
ample of this is the
YUI library by my
employer, Yahoo,
which is available
free of charge and
without registra-
tion. A zip file [2]
contains all the Ja-
vascript files you
will need in its
build directory.

After completing
the download, just
unpack the zip ar-
chive and copy the
build directory to,
for example, htdocs/yui on the local web
server. From now on, Javascript applica-
tions can load .js files, such as src=/yui/
yahoo/yahoo.js, for example.

Dynamically Patched HTML
The myx10.js file (Figure 4), pulled in at
the end of myx10.tmpl, defines the up-

date_buttons() function, which the
browser calls after loading the docu-
ment. This ensures that the browser calls
the server to obtain the status of every
configured device at page load time:

x10remote(device, U
'status');

To do this, the Javascript code uses
YAHOO.util.Dom.getElementsByClass-
Name() from YUI, which is called to re-
turn any DOM nodes tagged with the
class="clicker" attribute.

To query the status of an X10 receiver
configured in /etc/x10.conf, the browser
asynchronously calls the CGI script for
each defined button passing in the
device=mnemonic and action=status
parameters. myx10.cgi then checks its
DBM file on the server and returns the
last known state of the specified X10 de-
vice as on or off.

Dynamic Coloring
The Javascript file myx10.js displays the
buttons for actuated X10 receivers in
green and de-actuated receivers in red.

This action is handled by the Yahoo.
dom class’s setStyle method, which ac-
cepts a browser DOM object name,
searches for the object, and modifies the
BackgroundColor attribute of the CSS
style sheet. The first time the HTML
page generated by the CGI script is

01 #!/usr/bin/perl -w

02 use strict;

03 use CGI qw(:all);

04 use Log::Log4perl qw(:easy);

05 use YAML qw(LoadFile);

06 use Template;

07

 08 print header();

09

 10 my $action = param("action");

11 my $device = param("device");

12

 13 if (!defined $device) {

14 my $devices =

15 LoadFile("/etc/x10.conf");

16

 17 my $tpl = Template->new();

18 $tpl->process("myx10.tmpl",

19 { devices => $devices, })

20 or die $tpl->error();

21 exit 0;

22 }

23

 24 if (!defined $action

25 or $action !~

26 /^(on|off|status)$/)

27 {

28 print

29 "Error: No/Invalid action\n";

30 exit 0;

31 }

32

 33 if (!defined $device

34 or $device =~ /\W/)

35 {

36 print

37 "Error: use proper device\n";

38 exit 0;

39 }

40

 41 system "sudo",

42 "/usr/bin/myx10", $device,

43 param("action");

Listing 4: myx10.cgi

Figure 3: The HTML template for the web application.

PROGRAMMINGPerl: X10 Module

75ISSUE 78 MAY 2007W W W. L I N U X- M A G A Z I N E . C O M

loaded, the buttons do not have a color
assignment, but update_buttons() sends
an Ajax request for each button to the
server, which then checks the DBM file
to query the status of the device that is
in question.

When a response to an asynchronous
request arrives, the button is checked to
see whether it is on or off, and the but-
ton in question is painted accordingly.

The YUI Connection Manager is used
here to keep the Javascript code manage-
able despite dozens of simultaneous
requests.

At My Command
When a user clicks one of the buttons,
the browser jumps to the OnClick() rou-
tine for the button, which first refreshes
the status line with a message such as
Request: device on before going on to
send an Ajax request to the server via
the Connection Manager.

For example, the request for switching
on the DSL modem looks like this:

/cgi-bin/myx10.cgi?deviceU
=dslmodem&action=on

The only interesting thing about the
asynchronous response that arrives later
is the HTTP status code.

If the status code is 200 (OK), the
browser jumps to the Javascript handle-
Success() routine, where it first deletes
the status line before calling update_but-
ton() to change the color assignment for
the button because a state change has
occurred.

After querying the status with
action=status, the server will respond
with either on or off on the page it re-
turns. Because the response is termi-
nated by a newline character, the Javas-
cript code first removes the newline be-
fore passing it on to the update_button()
function.

Errors Happen
If an error occurs on handling the asyn-
chronous request, the YUI connection

manager will jump to handle-
Failure().
The function prints the status
code and a legible error mes-
sage on the status line to alert
the user.

This logic is provided by a
callback object that is defined
in myx10.js. Besides the two
jump points for the error and
success cases, myx10.js also de-
fines arguments to pass to the
callback functions at the end of
a request.

The following lines

callback.argument.deviceU
= device;
callback.argument.cmdU
= action;

set the mnemonic for the device
that has just been modified
(conveniently used as the id
setting for the corresponding
button as well) and the com-
mand to be transmitted. This
helps handleSuccess() link the
response to one of the many
asynchronous requests that
might have been sent.

The first time the page is
loaded, half a dozen Ajax re-
quests can occur simultane-

ously, and it can take a while for the but-
tons to change to reflect the assumed de-
vice status.

Users can also trigger multiple quasi-
simultaneous requests by clicking but-
tons in quick succession.

The Connection Manager makes it
easy to keep track of and to process re-
sponses one after another without mix-
ing up the requests.

Because the server-side X10 command
takes a couple of seconds to execute, a
button will typically not have a color as-
signment for a couple of seconds after
you click it.

The nice thing about asynchronous re-
quests is that you can carry on using the
GUI (clicking buttons, that is), and the
GUI will keep responding happily.

Installation
Store the myx10 script in /usr/bin and
make the script executable. Make sure
the script is owned by root and that it
cannot be modified by anyone else. Then
store the MyX10.pm Perl module in your
Perl path (for example, /usr/lib/perl5/
site_perl).

Add the names and data for your local
devices to your /etc/x10.conf configura-
tion file, not forgetting the house and
unit codes for the X10 receivers.

You need to make the myx10.cgi CGI
script executable and drop it into your
web server’s cgi-bin directory, which is
also where you will need the myx10.tmpl
template so that myx10.cgi can find it.

You need the myx10.js Javascript file
in your web server’s htdocs directory be-
cause the browser will look for it at this
location (last line of myx10.tmpl).

Conclusion
After completing all of these tasks, you
can sit back, relax, and press the buttons
on the web interface to switch the corre-
sponding devices on and off.

If you are near enough, you will even
hear the relays on the X10 appliance
modules clicking. Now that’s what I call
convenient! ■

Figure 4: The Javascript code in myx10.js.

[1] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads

[2] Yahoo YUI library:
http:// developer. yahoo. com/ yui

INFO

Perl: X10 ModulePROGRAMMING

76 ISSUE 78 MAY 2007 W W W. L I N U X- M A G A Z I N E . C O M

