
70

During early phases of a project,
developers tend to experiment
with various options, and some-

times it is too early to save prototypes in
the version control system. If you
haven’t set up a repository, or if you
haven’t been able to agree on its struc-
ture, you might find yourself working
without a safety net. In this case, good
code might fall victim to an over-zealous
rm * or your editor’s delete command.

This month’s Perl script, noworries,
can give you automatic version control.
Whenever you save a file with your edi-
tor, and whenever you use the shell to
manipulate files using commands like

rm or mv, a daemon hidden in the back-
ground receives a message. When it
does, it picks up the new or modified
file, and uses RCS to version the file. All
of this is transparent to the user. Figure 1
shows a user creating and then deleting
a new file in the Shell. Without some
Perl wizardry, the file, myfile would have
been gone for good, but calling nowor-
ries -l myfile tells us that the versioner
created a backup copy just 17 seconds
earlier. noworries -r 1.1 myfile retrieves
the file and writes its content to STD-
OUT.

The script does not use manipulated
shell functions or any other dirty tricks.
Of course, an instance of the script needs
to be running in the background – the -w
(for “watch”) option handles this – to
start the File Alteration Monitor (FAM)
utility [2], which in turn subscribes to
the operating system kernel’s Dnotify in-
terface. Whenever the file system cre-
ates, moves, or deletes a directory or file,
or manipulates file content, the kernel is
notified of the event. The File Alteration

Michael Schilli works
as a Software Devel-
oper at Yahoo!,
Sunnyvale, Cali for -
nia. He wrote “Perl
Power” for Addison-
Wesley and can be
 contacted at mschilli@ perlmeister.
com. His homepage is at
http:// perlmeister. com.

T
H

E
 A

U
T

H
O

R

We'll show you how you can avoid the tragedy of lost files with a

transparent, Perl-based version control system.

BY MICHAEL SCHILLI

Monitor (FAM) tells Dnotify that it is in-
terested in what is going on in various
directories and receives notifications in
return. CPAN has a Perl module (SGI::
FAM) that moves FAM’s C interface to
Perl. It is event-based and does not re-
quire CPU-intensive polling. Calling the
next_event() method blocks the daemon
until the next event occurs.

Figure 2 shows another example. In
this case a file is created, and then modi-
fied twice in a row. The daemon receives
a message for each event and creates
three versions of the files in RCS (1.1,
1.2, and 1.3). Calling noworries -l myfile
displays these versions, even if the file
has been deleted in the meantime.

Asking for revision 1.2 by specifying -r
1.2 and the filename file lets noworries
retrieve the version after the first modifi-
cation and prints its content to STDOUT.
The shell command shown in Figure 2
redirects the output back to a file named
file, which is immediately versioned
again by the daemon. Figure 3 shows the
daemon’s activity: just to be on the safe
side, the daemon logs its activities in the
file /tmp/noworries.log.

The noworries script takes care of files
and directories, no matter how deeply
they are nested, below ~/noworries in
the user’s home directory. This is where
you would typically set up new directo-

Detecting system changes with Dnotify

FILE RESCUE

Perl: noworriesPROGRAMMING

70 ISSUE 63 FEBRUARY 2006 W W W. L I N U X- M A G A Z I N E . C O M

ries, or extract tarballs if you
wanted the protection of a
safety net. The daemon cre-
ates a structure below ~/.no-
worries.rcs to record the
changes behind the scenes.
Each subdirectory contains a
RCS directory with the ver-
sioned files, traditionally
named ending in ,v. RCS has
been a Unix tool from day
one and is still used today by
version control systems such
as CVS or Perforce. The fol-
lowing set of commands
checks in a version of file:

echo "Data!" >file
mkdir RCS
ci file
co -l file

The program ci from the RCS
command set creates RCS/
file,v in the delta format used
by RCS. The co command at
the end, in combination with
the -l (for “lock”) option, re-
stores the current version to
the current directory. If you
then modify file, and follow
this up with another ci/co
command sequence, you end
up with two versions in RCS/
file,v, which can be retrieved
separately using co. The rlog
program, another member of
the RCS family, lets you view
the meta-data for file versions
you have checked in.

The noworries listing (List-
ing 1) defines the names of
these tools in Lines 25
through 27. If you pass them
to the script in this way,
make sure they reside in your

PATH to allow noworries to
call them. If needed, you can
hard code the full paths.

noworries uses the mkd
(make directory), cp (file
copy), cd (change directory),
cdback (go back to original
directory), and tap (execute a
program and collect output)
functions exported by Sys-
adm::Install. Regular readers
of my Perl column may recall
them from [4].

Noworries is
Watching You!
Before SGI::FAM can receive
messages about modified
files below a directory, FAM
first has to let the kernel
know that it is interested in
doing so. Events start to roll
in after calling $fam->moni-
tor(...) with ~/noworries as
its argument, whenever a
new directory or file is cre-
ated directly in ~/noworries.
However, this does not apply
to any subdirectories. For this
reason, SGI::FAM immedi-
ately launches another moni-
tor for subdirectories when-
ever it notices that a new
subdirectory has been cre-
ated. A similar trick applies if
noworries starts up when a
deeply nested directory struc-
ture below ~/noworries al-
ready exists. (We’ll get to that
in a moment.)

Setting the -w option
launches noworries in dae-
mon mode and runs the infi-
nite loop defined in the
watcher function in Line 88
of Listing 1. The call to the

Figure 1: A Perl daemon works behind the scenes to bring a file back

to life after it was deleted by a user.

ADVERTISEMENT

next_event() method in Line 98 blocks
the execution flow until one of four
FAM-monitored events occurs. To find
out which one of potentially many active
directory monitors has triggered, the
SGI::FAM object’s which() method,

which is called in Line 101, returns the
directory that triggered the event. The
event’s filename() method returns the
name of the new, existing, modified, or
deleted object, which can be a directory
or a file.

The type() method gives us the event
type. The types that noworries is inter-
ested in are create and change. The mon-
itor() method adds new directories to
the list of things to watch, while the
check_in() function defined in Line 170

 Listing 1: noworries Listing 1: noworries
001 #!/usr/bin/perl -w
002 #############################
003 # noworries -
004 # m@perlmeister.com
005 #############################
006 use strict;
007 use Sysadm::Install qw(:all);
008 use File::Find;
009 use SGI::FAM;
010 use Log::Log4perl qw(:easy);
011 use File::Basename;
012 use Getopt::Std;
013 use File::Spec::Functions
014 qw(rel2abs abs2rel);
015 use DateTime;
016 use
017 DateTime::Format::Strptime;
018 use Pod::Usage;
019
 020 my $RCS_DIR =
021 "$ENV{HOME}/.noworries.rcs";
022 my $SAFE_DIR =
023 "$ENV{HOME}/noworries";
024
 025 my $CI = "ci";
026 my $CO = "co";
027 my $RLOG = "rlog";
028
 029 getopts("dr:wl",
030 \my %opts);
031
 032 mkd $RCS_DIR
033 unless -d $RCS_DIR;
034
 035 Log::Log4perl->easy_init({
036 category => 'main',
037 level => $opts{d}
038 ? $DEBUG
039 : $INFO,
040 file => $opts{w} &&
041 !$opts{d}
042 ? "/tmp/noworries.log"
043 : "stdout",
044 layout => "%d %p %m%n"
045 }
046);
047

 048 if ($opts{w}) {
049 INFO "$0 starting up";
050 watcher();
051
 052 } elsif(
053 $opts{r} or $opts{l}) {
054
 055 my ($file) = @ARGV;
056 pod2usage("No file given")
057 unless defined $file;
058
 059 my $filename =
060 basename $file;
061
 062 my $absfile =
063 rel2abs($file);
064 my $relfile =
065 abs2rel($absfile,
066 $SAFE_DIR);
067
 068 my $reldir =
069 dirname($relfile);
070 cd "$RCS_DIR/$reldir";
071
 072 if ($opts{l}) {
073 rlog($filename);
074 } else {
075 sysrun(
076 $CO, "-r$opts{r}",
077 "-p", $filename
078);
079 }
080 cdback;
081
 082 } else {
083 pod2usage(
084 "No valid option given");
085 }
086
 087 #############################
088 sub watcher {
089 #############################
090 cd $SAFE_DIR;
091
 092 my $fam = SGI::FAM->new();
093 watch_subdirs(".", $fam);
094

 095 while (1) {
096 # Block until next event
097 my $event =
098 $fam->next_event();
099
 100 my $dir =
101 $fam->which($event);
102 my $fullpath =
103 $dir . "/" .
104 $event->filename();
105
 106 # Emacs temp files
107 next
108 if $fullpath =~ /~$/;
109
 110 # Vi temp files
111 next if $fullpath =~
112 /\.sw[px]x?$/;
113
 114 DEBUG "Event: ",
115 $event->type, "(",
116 $event->filename, ")";
117
 118 if ($event->type eq
119 "create"
120 and -d $fullpath) {
121 DEBUG "Adding monitor",
122 " for directory ",
123 $fullpath, "\n";
124 $fam->monitor(
125 $fullpath);
126 }
127 elsif ($event->type =~
128 /create|change/
129 and -f $fullpath) {
130 check_in($fullpath);
131 }
132 }
133 }
134
 135 #############################
136 sub watch_subdirs {
137 #############################
138 my ($start_dir, $fam) = @_;
139
 140 $fam->monitor($start_dir);
141

 142 for my $dir (
143 subdirs($start_dir)) {
144 DEBUG "Adding monitor ",
145 "for $dir";
146 $fam->monitor($dir);
147 }
148
 149 return $fam;
150 }
151
 152 #############################
153 sub subdirs {
154 #############################
155 my ($dir) = @_;
156
 157 my @dirs = ();
158
 159 find sub {
160 return unless -d;
161 return if /^\.\.?$/;
162 push @dirs,
163 $File::Find::name;
164 }, $dir;
165
 166 return @dirs;
167 }
168
 169 #############################
170 sub check_in {
171 #############################
172 my ($file) = @_;
173
 174 if (!-T $file) {
175 DEBUG "Skipping non-",
176 "text file $file";
177 return;
178 }
179
 180 my $rel_dir =
181 dirname($file);
182 my $rcs_dir =
183 "$RCS_DIR/$rel_dir/RCS";
184
 185 mkd $rcs_dir
186 unless -d $rcs_dir;
187
 188 cd "$RCS_DIR/$rel_dir";

189 cp "$SAFE_DIR/$file", ".";
190 my $filename =
191 basename($file);
192
 193 INFO "Checking $filename",
194 " into RCS";
195 my ($stdout, $stderr,
196 $exit_code) = tap(
197 $CI, "-t-",
198 "-m-", $filename
199);
200 INFO "Check-in result: ",
201 "rc=$exit_code ",
202 "$stdout $stderr";
203
 204 ($stdout, $stderr,
205 $exit_code) = tap(
206 $CO, "-l", $filename);
207 cdback;
208 }
209
 210 #############################
211 sub time_diff {
212 #############################
213 my ($dt) = @_;
214
 215 my $dur =
216 DateTime->now() - $dt;
217
 218 for (
219 qw(weeks days hours
220 minutes seconds)) {
221 my $u =
222 $dur->in_units($_);
223 return "$u $_" if $u;
224 }
225 }
226
 227 #############################
228 sub rlog {
229 #############################
230 my ($file) = @_;
231
 232 my ($stdout, $stderr,
233 $exit_code)
234 = tap($RLOG, $file);
235

 236 my $p =
237 DateTime::Format::Strptime
238 ->new(pattern =>
239 '%Y/%m/%d %H:%M:%S');
240
 241 while ($stdout =~
242 /^revision\s(\S+).*?
243 date:\s(.*?);
244 (.*?)$/gmxs) {
245
 246 my ($rev, $date, $rest)
247 = ($1, $2, $3);
248
 249 my ($lines) = ($rest =~
250 /lines:\s+(.*)/);
251 $lines ||=
252 "first version";
253
 254 my $dt =
255 $p->parse_datetime(
256 $date);
257
 258 print "$rev ",
259 time_diff($dt),
260 " ago ($lines)\n";
261 }
262 }
263
 264 __END__
265
 266 =head1 NAME
267
 268 noworries - Dev Safety Net
269
 270 =head1 SYNOPSIS
271
 272 # Print previous version
273 noworries -r revision file
274
 275 # List all revisions
276 noworries -l file
277
 278 # Start the watcher
279 noworries -w

Perl: noworriesPROGRAMMING

72 ISSUE 63 FEBRUARY 2006 W W W. L I N U X- M A G A Z I N E . C O M

handles new or modified files. A similar
approach is used for adding directories.
The daemon uses find to locate directo-
ries when launched, assuming that ~/
noworries already exists. The subdirs()
helper function in Line 153 digs down

deeper and deeper into the directory tree
and returns any directories it finds no
matter how deeply nested they may be.
The watch_subdirs() function iterates
over all of them and passes their relative
pathnames to FAM for surveillance.

The documentation section in Line
266 is not just for convenient access to a
nicely formatted manual page whenever
a user calls perldoc noworries. It is also
output by the pod2usage() function, if
the user fails to provide the required

 Listing 1: noworries Listing 1: noworries
001 #!/usr/bin/perl -w
002 #############################
003 # noworries -
004 # m@perlmeister.com
005 #############################
006 use strict;
007 use Sysadm::Install qw(:all);
008 use File::Find;
009 use SGI::FAM;
010 use Log::Log4perl qw(:easy);
011 use File::Basename;
012 use Getopt::Std;
013 use File::Spec::Functions
014 qw(rel2abs abs2rel);
015 use DateTime;
016 use
017 DateTime::Format::Strptime;
018 use Pod::Usage;
019
 020 my $RCS_DIR =
021 "$ENV{HOME}/.noworries.rcs";
022 my $SAFE_DIR =
023 "$ENV{HOME}/noworries";
024
 025 my $CI = "ci";
026 my $CO = "co";
027 my $RLOG = "rlog";
028
 029 getopts("dr:wl",
030 \my %opts);
031
 032 mkd $RCS_DIR
033 unless -d $RCS_DIR;
034
 035 Log::Log4perl->easy_init({
036 category => 'main',
037 level => $opts{d}
038 ? $DEBUG
039 : $INFO,
040 file => $opts{w} &&
041 !$opts{d}
042 ? "/tmp/noworries.log"
043 : "stdout",
044 layout => "%d %p %m%n"
045 }
046);
047

 048 if ($opts{w}) {
049 INFO "$0 starting up";
050 watcher();
051
 052 } elsif(
053 $opts{r} or $opts{l}) {
054
 055 my ($file) = @ARGV;
056 pod2usage("No file given")
057 unless defined $file;
058
 059 my $filename =
060 basename $file;
061
 062 my $absfile =
063 rel2abs($file);
064 my $relfile =
065 abs2rel($absfile,
066 $SAFE_DIR);
067
 068 my $reldir =
069 dirname($relfile);
070 cd "$RCS_DIR/$reldir";
071
 072 if ($opts{l}) {
073 rlog($filename);
074 } else {
075 sysrun(
076 $CO, "-r$opts{r}",
077 "-p", $filename
078);
079 }
080 cdback;
081
 082 } else {
083 pod2usage(
084 "No valid option given");
085 }
086
 087 #############################
088 sub watcher {
089 #############################
090 cd $SAFE_DIR;
091
 092 my $fam = SGI::FAM->new();
093 watch_subdirs(".", $fam);
094

 095 while (1) {
096 # Block until next event
097 my $event =
098 $fam->next_event();
099
 100 my $dir =
101 $fam->which($event);
102 my $fullpath =
103 $dir . "/" .
104 $event->filename();
105
 106 # Emacs temp files
107 next
108 if $fullpath =~ /~$/;
109
 110 # Vi temp files
111 next if $fullpath =~
112 /\.sw[px]x?$/;
113
 114 DEBUG "Event: ",
115 $event->type, "(",
116 $event->filename, ")";
117
 118 if ($event->type eq
119 "create"
120 and -d $fullpath) {
121 DEBUG "Adding monitor",
122 " for directory ",
123 $fullpath, "\n";
124 $fam->monitor(
125 $fullpath);
126 }
127 elsif ($event->type =~
128 /create|change/
129 and -f $fullpath) {
130 check_in($fullpath);
131 }
132 }
133 }
134
 135 #############################
136 sub watch_subdirs {
137 #############################
138 my ($start_dir, $fam) = @_;
139
 140 $fam->monitor($start_dir);
141

 142 for my $dir (
143 subdirs($start_dir)) {
144 DEBUG "Adding monitor ",
145 "for $dir";
146 $fam->monitor($dir);
147 }
148
 149 return $fam;
150 }
151
 152 #############################
153 sub subdirs {
154 #############################
155 my ($dir) = @_;
156
 157 my @dirs = ();
158
 159 find sub {
160 return unless -d;
161 return if /^\.\.?$/;
162 push @dirs,
163 $File::Find::name;
164 }, $dir;
165
 166 return @dirs;
167 }
168
 169 #############################
170 sub check_in {
171 #############################
172 my ($file) = @_;
173
 174 if (!-T $file) {
175 DEBUG "Skipping non-",
176 "text file $file";
177 return;
178 }
179
 180 my $rel_dir =
181 dirname($file);
182 my $rcs_dir =
183 "$RCS_DIR/$rel_dir/RCS";
184
 185 mkd $rcs_dir
186 unless -d $rcs_dir;
187
 188 cd "$RCS_DIR/$rel_dir";

189 cp "$SAFE_DIR/$file", ".";
190 my $filename =
191 basename($file);
192
 193 INFO "Checking $filename",
194 " into RCS";
195 my ($stdout, $stderr,
196 $exit_code) = tap(
197 $CI, "-t-",
198 "-m-", $filename
199);
200 INFO "Check-in result: ",
201 "rc=$exit_code ",
202 "$stdout $stderr";
203
 204 ($stdout, $stderr,
205 $exit_code) = tap(
206 $CO, "-l", $filename);
207 cdback;
208 }
209
 210 #############################
211 sub time_diff {
212 #############################
213 my ($dt) = @_;
214
 215 my $dur =
216 DateTime->now() - $dt;
217
 218 for (
219 qw(weeks days hours
220 minutes seconds)) {
221 my $u =
222 $dur->in_units($_);
223 return "$u $_" if $u;
224 }
225 }
226
 227 #############################
228 sub rlog {
229 #############################
230 my ($file) = @_;
231
 232 my ($stdout, $stderr,
233 $exit_code)
234 = tap($RLOG, $file);
235

 236 my $p =
237 DateTime::Format::Strptime
238 ->new(pattern =>
239 '%Y/%m/%d %H:%M:%S');
240
 241 while ($stdout =~
242 /^revision\s(\S+).*?
243 date:\s(.*?);
244 (.*?)$/gmxs) {
245
 246 my ($rev, $date, $rest)
247 = ($1, $2, $3);
248
 249 my ($lines) = ($rest =~
250 /lines:\s+(.*)/);
251 $lines ||=
252 "first version";
253
 254 my $dt =
255 $p->parse_datetime(
256 $date);
257
 258 print "$rev ",
259 time_diff($dt),
260 " ago ($lines)\n";
261 }
262 }
263
 264 __END__
265
 266 =head1 NAME
267
 268 noworries - Dev Safety Net
269
 270 =head1 SYNOPSIS
271
 272 # Print previous version
273 noworries -r revision file
274
 275 # List all revisions
276 noworries -l file
277
 278 # Start the watcher
279 noworries -w

PROGRAMMINGPerl: noworries

73ISSUE 63 FEBRUARY 2006W W W. L I N U X- M A G A Z I N E . C O M

command line options. It does not make
much sense to version temporary vi or
emacs files, so they are filtered out in
Lines 107 through 112.

When a file needs to be checked into
the version control system, check_in in
Line 170 first checks if the file is a text
file. check_in discards binary files in Line
174. The function is called with a path-
name relative to ~/noworries, as this is
where watcher() jumps to in Line 90.
Line 189 copies the original file to the
RCS tree, and Line 195 calls the ci tool
with the -t and -m options. It passes a
value of - to both, as the first – and all
following – check-in comments are
meaningless. But you have to give ci
something to chew on to avoid an inter-
active prompt. Line 204 checks the file
out, as described earlier on. The next
time a change occurs, the checked out
copy is overwritten, and the new version
is checked in by ci.

What’s the Date, Today?
noworries calls the RCS rlog function to
find out which versions of a
file are available. rlog returns
the version numbers with the
date (formated as yyyy/mm/
dd hh:mm:ss) and also re-
veals the number of lines
that have changed in com-
parison to the previous ver-
sion. Of course, it can’t give
us this information for the
initial version, but if you are
told that version 1.2 has
lines: +10 -0, this means
there are 10 new lines in
comparison to 1.1, and that
no lines have been deleted.

The DateTime
module from
CPAN helps tre-
mendously with
date calculations.
The DateTime::
Format::Strptime
module parses the
RCS date informa-
tion, and converts
the value to sec-
onds after the
epoch. To do this,
the constructor
expects a format
string with the fol-
lowing pattern:

"%Y/%m/%d %H:%M:%S", and the
call to parse_datetime() returns a fully
initialized DateTime object if successful.
The while loop that starts in Line 241
navigates the slightly overwhelming out-
put by the rlog helper, using a multiple-
line regular expression to do so.

The time_diff() function in Line 211
expects a DateTime object and calculates
how old a version is in seconds, min-
utes, hours, days, or weeks. This is eas-
ier to read for the heavy noworries user.

Unfortunately, Dnotify, the mecha-
nism used by FAM, doesn’t scale well
and bows out at around two hundred
subdirectories. To solve this problem
dnotify has been replaced by inotify in
more recent kernels. inotify makes better
use of resources and scales more easily.
FAM is also obsolete, and Gamin [3] its
designated successor.

The kernel’s Dnotify mechanism does
not use file system inodes, but file-
names, so that mv file1 file2 triggers two
events: a delete type and a create type
event. This does not bother noworries,

as the script ignores delete events, and if
the same file appears some time later, it
is just checked in as the latest version.

The script should only be used on
your local hard disk, and not with NFS,
as FAM can only be efficient if the NFS
target is also running a FAM. If not, it
polls the target at regular intervals, and
this makes the whole thing somewhat
ineffective.

Installation
You need to install the SGI::FAM, Sys-
adm::Install, DateTime, DateTime::For-
mat::Strptime, and Pod::Usage CPAN
modules; a CPAN Shell scan will help to
quickly resolve the dependencies. If you
see a FAM.c:813: error: storage size of
'RETVAL' isn't known error when build-
ing SGI::FAM, change Line 813 in FAM.c
from enum FAMCodes RETVAL; to FAM-
Codes RETVAL;; re-running make should
then give you the goodies.

To make sure that the daemon is al-
ways running, add a line such as x777:3:
respawn:su mschilli -c "/home/mschilli/
bin/noworries -w" to /etc/inittab, and
then let the Init daemon know by run-
ning init q. The process has to run with
the ID of the current user (mschilli in
this case) to ensure that $ENV{HOME}
in the script points to the right home
directory. In this case, the init process
launches the noworries daemon when
you boot your machine, and the respawn
option ensures that the process restarts
immediately if for some reason it is inad-
vertently terminated. But before you do
all of this, test the daemon on the com-
mand line to see if everything is working
properly.

The -d for debug option might be a
help if you are experiencing problems; it
displays detailed status information on
standard output rather than logging in
/tmp/noworries.log. ■

Figure 3: Behind the scenes, the daemon monitors the

file system and creates a versioned backup copy when-

ever a change occurs in the monitored directories.

[1] Listing for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 63/ Perl

[2] FAM Homepage:
http:// oss. sgi. com/ projects/ fam/

[3] Gamin Homepage: http:// www.
gnome. org/ ~veillard/ gamin/

[4] “Perl Shell Scripts,” Michael Schilli:
http:// www. linux-magazine. com/
issue/ 52/ Perl_Shell_Scripts. pdf

INFO

Figure 2: Two lines are added to a newly created file in two subse-

quent editing sessions. Noworries retrieves version 2 on request.

Perl: noworriesPROGRAMMING

74 ISSUE 63 FEBRUARY 2006 W W W. L I N U X- M A G A Z I N E . C O M

