
First-time visitors to perlmonks.
com are rubbing their eyes in dis-
belief: High-caliber Perl hackers

are jumping to answer even the simplest
of newbie questions. The reason for this
is that the community assigns XP (expe-
rience) points for the best replies. And
the more XP you have, the higher you
climb in the ranking, from a novice, to a
monk, and slowly to expert status.

Best of Class
Due to the community dynamics on
perlmonks.com, the
first person to

answer a question correctly typically
gets the most XP. Instead of pulling the
web page with the latest questions time
and time again, it makes sense to script
the process and have the script let you
know when a new query arrives.

The pmwatcher.pl script described
in this issue fetches the perlmonks.
com page with the Newest Nodes at
regular intervals, remembering
older entries and sending out an
instant message when it discovers
new postings.

The script uses a topsy-turvy
approach. Instead of calling an
instant messaging client to for-
ward a message, the script itself
acts as a messenger plug-in. The

parent application, Gaim,
calls the script at regular
intervals, handing con-
trol over to the plug-in,
which gets the latest
postings and sends
instant messages to the
user via Gaim’s internal
interface.

Rush Job
Obviously, there’s no
time for the Gaim
plug-in to dilly-
dally. While it is
running, the Gaim
application can’t
process events
and the pretty
GUI freezes. To
avoid this
problem, the
plug-in has to
return control
to Gaim
quickly.

However, it can take a few seconds to
download the content of a remote web
page. Both DNS name resolution and the
process of retrieving the content of the
requested web page can take some time,
during which the CPU should return to
other tasks. The tried-and-trusted POE
[3] framework provides exactly what we
need. The POE kernel runs a single pro-
cess (and only a single thread), but uses
cooperative multitasking between con-
current tasks to ensure that each one is
processed.

Typically, POE runs the show with its
own kernel, the POE task manager. How-
ever, it can just as easily be integrated
with other event loops, such as the ones
provided by Gtk or Perl/ Tk. In the Gaim
scenario, however, with a plugin that
gets called by the main application at
regular intervals, we need to think differ-
ently: in plugin_load(), which Gaim
calls during startup, the pmwatcher.pl
plug-in script defines the various tasks
that it will be running later. Before plu-
gin_load() hands the reins back to Gaim,
it calls Gaim::timeout_add($plugin,
$UPDATE,\&refresh);, and this guaran-
tees that Gaim will call the refresh()
plug-in function refresh() exactly
$UPDATE seconds later. This is where
POE cuts in to handle the most urgent
tasks before handing control back to
Gaim once more, but of course, not with-
out scheduling another event to ensure
that the main application will call
refresh() after a specified interval, and
thus entering an endless loop.
pmwatcher.pl stores the plug-in object
passed to plugin_load() in the global
$PLUGIN variable to allow refresh() to
request a new timeout from Gaim.

Additionally, the calls to Gaim::signal_
connect in lines 61 and 68 handle events

The Gaim project offers an instant messenger client that speaks a large

number of protocols. We’ll show you how to extend Gaim with Perl

plugins. BY MICHAEL SCHILLI

Get the news from perlmonks.com with a Gaim plug-in

SEEKING WISDOM

Perl: A Gaim PluginPROGRAMMING

72 ISSUE 60 NOVEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

73

from Gaim users logging on and off.
When these events occur, Gaim jumps to
the buddy_signed_on_callback and
buddy_signed_off_callback functions
defined in the plugin, which check if the
username reported matches the name
specified in line 25. If so, buddy_signed_
on_callback stores the Gaim user struc-
ture in the global $BUDDY variable. The
variable is referenced later when sending
a message to the user.

buddy_signed_on_callback sets the
$ACTIVE flag to 1 when this special user
logs on; and buddy_signed_off_callback
sets it to 0 when the user logs off. If
$ACTIVE is set, the plugin will run a sin-
gle POE timeslice; if it isn’t, nothing will
happen in the plugin’s refresh method.

If refresh were to call the POE run()
method, it would never return. Instead,
line 162 calls run_one_timeslice(), which
simply processes the most pressing task
in the POE pipeline, but returns immedi-
ately afterwards instead of continuing or
waiting for further events.

As each timeslice can process only a
small part of a request, the whole HTTP
request can take about 20 refresh()

cycles, but this is not really an issue. The
only important thing is that the CPU
keeps on running at full speed during
the callback and does not wait for exter-
nal events such as HTTP response data
rolling in. POE uses POE::Component::
Client::HTTP to take care of the details
involved in getting a page off the Web.
If POE::Component::Client::DNS is
installed, even the hostname will be

resolved asyncronously instead of by
using gethostbyname().

The initial POE state defined in line
83, _start does nothing but initiate the
next state, http_start. The post method
sends a request to the POE component
POE::Component::Client::HTTP, which
is already set up and running in the POE
kernel; the spawn method call in line 76
takes care of this. The HTTP client com-
ponent object (labeled ua) will change
state to http_ready whenever HTTP
response data trickles in. Before http_
start hands control back to the POE
kernel, it requests a POE timeout 10 min-
utes in the future; this again triggers an
http_start state to get the Website again.

The http_ready state handler is passed
a reference to an array in $_[ARG1]; the
first element in the array is an object of
type HTTP::Response with the results of
the web request (for more details on
POE’s unusual approach to passing
parameters, check out [3].)

Needle in a Haystack
To extract the links and text passages
from the questions section of the down-

Figure 1: New Perlmonks postings are

reported via instant messaging, giving you

an opportunity to gain XP by being first to

offer help.

ADVERTISEMENT

PROGRAMMINGPerl: A Gaim Plugin

73ISSUE 60 NOVEMBER 2005W W W. L I N U X- M A G A Z I N E . C O M

loaded Perlmonks page, the qparse func-
tion in line 237 implements an HTML
parser. Not every link on the page will
belong to a new query, because there are
other sections associated with the page,
such as Discussion or Meditations, that

we want our pmwatcher.pl script to
ignore.

HTML::TreeBuilder creates a tree of
HTML elements from an HTML docu-
ment. qparse() navigates the tree built
by HTML::TreeBuilder, first going to a

known <A> element with toc-
Questions in its name attribute.

From the HTML::Element type node
that this finds, the parent() method
takes us one level up the tree, where the
while loop in line 269 looks for a

 Listing 1: pmwatcher.pl Listing 1: pmwatcher.pl
001 #!/usr/bin/perl -w
002 #############################
003 # pmwatcher - Gaim plugin to
004 # watch perlmonks.com
005 #############################
006 use strict;
007 use Gaim;
008 use HTML::TreeBuilder;
009 use URI::URL;
010 use CGI qw(a);
011 use Cache::FileCache;
012 use POE
013 qw(Component::Client::HTTP);
014 use HTTP::Request::Common;
015
 016 our $FETCH_INTERVAL = 600;
017 our $FETCH_URL =
018 "http://perlmonks.com/"
019 . "?node=Newest%20Nodes";
020
 021 our $ACTIVE = 0;
022
 023 # Call plugins every second
024 our $UPDATE = 1;
025 our $USER = "mikeschilli";
026 our $BUDDY = undef;
027 our $PLUGIN = undef;
028
 029 our %PLUGIN_INFO = (
030 perl_api_version => 2,
031 name => "pmwatcher",
032 summary =>
033 "Perlmonks Watch Plugin",
034 version => "1.0",
035 description =>
036 "Reports latest postings "
037 . "on perlmonks.com, "
038 . "Mike Schilli, 2005"
039 . "(m\@perlmeister.com)",
040 load => "plugin_load",
041);
042
 043 our $cache =
044 new Cache::FileCache(
045 {
046 namespace => "pmwatcher",
047 }
048);
049
 050 #############################
051 sub plugin_init {

052 #############################
053 return %PLUGIN_INFO;
054 }
055
 056 #############################
057 sub plugin_load {
058 #############################
059 my ($plugin) = @_;
060
 061 Gaim::signal_connect(
062 Gaim::BuddyList::handle(),
063 "buddy-signed-on",
064 $plugin,
065 \&buddy_signed_on_callback,
066);
067
 068 Gaim::signal_connect(
069 Gaim::BuddyList::handle(),
070 "buddy-signed-off",
071 $plugin,
072 \&buddy_signed_off_callback,
073);
074
 075 POE::Component::Client::HTTP
076 ->spawn(
077 Alias => "ua",
078 Timeout => 60,
079);
080
 081 POE::Session->create(
082 inline_states => {
083 _start => sub {
084 $poe_kernel->yield(
085 'http_start');
086 },
087
 088 http_start => sub {
089 Gaim::debug_info(
090 "pmwatcher",
091 "Fetching $FETCH_URL\n"
092);
093 $poe_kernel->post(
094 "ua",
095 "request",
096 "http_ready",
097 GET $FETCH_URL);
098 $poe_kernel->delay(
099 'http_start',
100 $FETCH_INTERVAL
101);
102 },

103
 104 http_ready => sub {
105 Gaim::debug_info(
106 "pmwatcher",
107 "http_ready $FETCH_URL\n"
108);
109 my $resp = $_[ARG1]->[0];
110 if($resp->is_success()) {
111 pm_update(
112 $resp->content());
113 } else {
114 Gaim::debug_info(
115 "pmwatcher",
116 "Can't fetch " .
117 "$FETCH_URL: " .
118 $resp->message()
119);
120 }
121 },
122 }
123);
124
 125 Gaim::timeout_add($plugin,
126 $UPDATE, \&refresh);
127 $PLUGIN = $plugin;
128 }
129
 130 #############################
131 sub buddy_signed_on_callback{
132 #############################
133 my ($buddy, $data) = @_;
134
 135 return if
136 $buddy->get_alias ne $USER;
137 $ACTIVE = 1;
138 $BUDDY = $buddy;
139 }
140
 141 #############################
142 sub
143 buddy_signed_off_callback {
144 #############################
145 my ($buddy, $data) = @_;
146
 147 return if
148 $buddy->get_alias ne $USER;
149 $ACTIVE = 0;
150 $BUDDY = undef;
151 }
152
 153 #############################

Perl: A Gaim PluginPROGRAMMING

74 ISSUE 60 NOVEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

<table> element by calling right() to
move to the right at this level of the tree.
The table has rows of links with the
questions in the first column of the table
and links to the posters in the second
column.

This is why the first for loop in 274
goes to each <tr> element (the table
rows), and why the inner loop searches
for <a> links when it gets there. Start-
ing at the current element, the look_
down() method of a tree element

searches downward for nodes with spe-
cific properties and hands matching ele-
ments back as a list. The _tag => $tag-
name condition searches for tags with
the required names. attrname =>
$attrvalue checks if the tags that this

 Listing 1: pmwatcher.pl Listing 1: pmwatcher.pl
154 sub refresh {
155 #############################
156 Gaim::debug_info(
157 "pmwatcher",
158 "Refresh (ACTIVE=$ACTIVE)\n"
159);
160 if ($ACTIVE) {
161 $poe_kernel
162 ->run_one_timeslice();
163 }
164
 165 Gaim::timeout_add($PLUGIN,
166 $UPDATE, \&refresh);
167 }
168
 169 #############################
170 sub pm_update {
171 #############################
172 my ($html_text) = @_;
173
 174 if (my @nws =
175 latest_news($html_text)) {
176
 177 my $c =
178 Gaim::Conversation::IM::new
179 ($BUDDY->get_account(),
180 $BUDDY->get_name()
181);
182
 183 $c->send("$_\n") for @nws;
184 }
185 }
186
 187 #############################
188 sub latest_news {
189 #############################
190 my ($html_string) = @_;
191
 192 my $start_url =
193 URI::URL->new($FETCH_URL);
194
 195 my $max_node;
196
 197 my $saved =
198 $cache->get("max-node");
199
 200 $saved = 0
201 unless defined $saved;
202
 203 my @aimtext = ();
204

 205 for my $entry (
206 @{ qparse($html_string) }){
207
 208 my ($text, $url) = @$entry;
209
 210 my ($node) =
211 $url =~ /(\d+)$/;
212 if ($node > $saved) {
213 Gaim::debug_info(
214 "pmwatcher",
215 "New node $text ($url)");
216
 217 $url =
218 a({ href => $url }, $url);
219
 220 push @aimtext,
221 "$text\n$url";
222 }
223
 224 $max_node = $node
225 if !defined $max_node
226 or $max_node < $node;
227 }
228
 229 $cache->set("max-node",
230 $max_node)
231 if $saved < $max_node;
232
 233 return @aimtext;
234 }
235
 236 #############################
237 sub qparse {
238 #############################
239 my ($html_string) = @_;
240
 241 my $start_url =
242 URI::URL->new($FETCH_URL);
243
 244 my @questions = ();
245
 246 my $parser =
247 HTML::TreeBuilder->new();
248
 249 my $tree =
250 $parser->parse(
251 $html_string);
252
 253 my ($questions) =
254 $tree->look_down(
255 "_tag", "a",

256 "name", "toc-Questions");
257
 258 if (!$questions) {
259 Gaim::debug_info(
260 "pmwatcher",
261 "No Questions section"
262);
263 return undef;
264 }
265
 266 my $node =
267 $questions->parent();
268
 269 while($node->tag()
270 ne "table") {
271 $node = $node->right();
272 }
273
 274 for my $tr (
275 $node->look_down(
276 "_tag", "tr"
277)) {
278
 279 for my $a (
280 $tr->look_down(
281 "_tag", "a"
282)) {
283 my $href =
284 $a->attr('href');
285 my $text = $a->as_text();
286 my $url =
287 URI::URL->new($href,
288 $start_url);
289
 290 push @questions,
291 [$text, $url->abs()];
292
 293 # Process only the question
294 # not the author's node
295 last;
296 }
297 }
298
 299 $tree->delete();
300 return \@questions;
301 }

PROGRAMMINGPerl: A Gaim Plugin

75ISSUE 60 NOVEMBER 2005W W W. L I N U X- M A G A Z I N E . C O M

finds have an attribute with the specified
name.

The link text and href attribute value
are extracted from the first link to be
found, the latter is converted to an abso-
lute URL, and finally, both values are
added to the @questions array. The link
in the second row (containing poster
name and details) is squashed by a pair
of for loops (lines 274 and 279) with a
last instruction following the end of the
inner loop. Another important thing is to
delete() the tree after parsing to avoid
wasting valuable memory.

Alternative parsers include XML::
LibXML or XML::XSH, both of which use
powerful XPath syntax. However, both
take offense at poorly written HTML
documents and ball out where a web
browser would be more forgiving.

The script still needs to make a note
of the questions it has already seen to
disambiguate them from new queries.
To do so, it leverages the fact that Perl-
monks.com assigns a unique numeric
node ID, which is hidden in the URL
for the question. A regular expression
extracts the ID from the URL and com-
pares it with the last number saved in a
persistent Cache::FileCache object. A
question is new if it has a higher ID
than the last known node. Then the last
known node ID is cached for the follow-
ing queries.

The latest_news() function returns an
array of formatted IM messages for the
user. If the array is empty, there is no
news. If there is news, lines 179 and 180
reference the user’s globally stored Gaim
structure in $BUDDY to create a Gaim::
Conversation::IM class object. Calling
this object’s send() method then makes
the HTML-formatted message show up

in the user’s IM
window, just as if
an IM buddy had
sent it.

Installation
If you do not have
Gaim, it is a good
idea to download
the latest version
1.4.0 from gaim.
sourceforge.net.
The Perl interface,
Gaim.pm, is not
available from
CPAN, but it is
included with the
Gaim distribution. Enter the following to
install the Gaim.pm Perl module:

cd plugins/perl/common
perl Makefile.PL
make install

You need to manually create the plug-in
directory in your home directory by
entering mkdir ~/.gaim/plugins. Any
Perl scripts located there and ending in
.pl are picked up by Gaim‘s Perl loader
as Gaim plug-ins when the program
launches. Just copy pmwatcher.pl to the
plugins directory, make it executable,
and then launch Gaim. You can then
select Tools->Preferences->Plugins (Fig-
ure 3) to enable the plug-in permanently
by selecting the appropriate check box.
Gaim takes the data shown in the dialog
from the %PLUGIN_INFO hash, which is
returned by plugin_init() (defined at line
51 in pmwatcher.pl).

The CPAN modules HTML::Tree-
Builder, URI::URL, Cache::FileCache,
POE, POE::Component::Client::HTTP

POE::Component::Client::DNS and
HTTP::Request::Common need to be
installed using a CPAN shell.

In the script itself, you can set
$FETCH_INTERVAL to define the interval
between web requests. The default is ten
minutes, and that should be fine to keep
you up to date without annoying the
people who run perlmonks.com.

You can launch Gaim with the -d (for
debug) option to print log messages from
the Gaim::debug_info function in the
Perl script on standard output. One thing
to keep in mind: Gaim’s plug-in scripts
will not run at the command line, where
they quit after issuing an error message.
They only run within Gaim.

Don't forget to set the $USER variable
to your preferred username. Logging on
will then trigger the plug-in actions. If
the user is not logged on, the plug-in is
called once a second, but without trig-
gering any web requests.

Once this user logs on via Gaim
(regardless of the service), web requests
start fetching data from perlmonks.com
every 10 minutes, and the plug-in keeps
the aspiring expert up to date with chal-
lenging questions, to help them on their
path to greater wisdom. ■

[1] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 60/ Perl

[2] Basic tutorial on the Gaim Perl inter-
face: http:// gaim. sourceforge. net/ api/
perl-howto. html

[3] Michael Schilli, “DJ Training,” Linux
Magazine 08/ 2004, http:// www.
linux-magazine. com/ issue/ 45/ Perl_
Playlist_selecting. pdf

INFO

Figure 3: Enabling the new Perl plug-in.

Figure 2: Gaim communicates with the Perl plug-in, which in turn controls a POE state

machine.

Gaim

plugin
init

plugin
load

buddy-
sign-in

buddy-
sign-out

refresh()

pmwatcher.pl

POE

http_ready

start

http_start delay

sc
he

du
le

 c
al

lb
ac

k

ca
llb

ac
k

Perl: A Gaim PluginPROGRAMMING

76 ISSUE 60 NOVEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

