
formats to reflect the current locale set-
tings.

On the Shoulders of Giants
No less than five CPAN modules were
used to implement Mailit. Needless to
say, the modules can do a lot more than
the simple scripting we will be looking
into in this article.

The first of the bunch, OpenOffice::
OODoc, provides an object-oriented

interface to the content and structure of
Open Office documents. Mailit only
needs text replacement and just uses the
OpenOffice::OODoc::Text subclass.

The new constructor in line 36 of
Mailit first opens the Open Office file, a
template document with the correct
formatting and placeholders, as shown
in Figure 1. The getTextElementList()
method then extracts a list of all the text
elements in the document. The return

values are pointers to
XML::XPath::Node::Ele
ment objects, as OpenOf-
fice::OODoc relies heavily
on XML::XPath for the
internal representation of
XML-based Open Office
files under the hood.

To extract the text from a
paragraph element $e
returned by the list func-
tion, you need to call the
OpenOffice::OODoc::Text
object getText() method,
passing it a pointer to the
element: $doc->getText
($e).

Mailit then checks the
text for placeholders with
the [% xxx %] format and

Open Office has become a genuine
alternative to Windows solutions
such as MS Office. Just complete

a few simple installation steps, and you
can use a variety of programs to manipu-
late Open Office documents without
even launching the Open Office package.

Of course, Perl has a module that gives
you access to Open Office data. A small
program called Mailit (see Listing 1)
helps you create letters quickly and eas-
ily. To do so, Mailit uses templates like
the one shown in Figure 1, adding the
recipient, the subject, the body text, and
the current date. The template uses the
following placeholders:

[% date %] => current date
[% recipient %] => recip. addr.
[% subject %] => subject line
[% text %] => body text

Mailit uses a plain text file (see Figure 2)
and an Open Office document as a tem-
plate to create a letter with a neat layout
(see Figure 3). The simple text file is
structured in paragraphs. The first para-
graph contains the subject line, and after
it are paragraphs containing the body
text of the letter. Mailit automatically
generates the date (top right), which it

It seems hardly worth launching

Open Office just to print a standard

letter with a few lines of text. But

before you resort to using a pen and

paper, why not fire up your Perl inter-

preter? You can use Perl to create a

handy tool that will help you format

letters.

BY MICHAEL SCHILLI

Creating Open Office Documents with Perl

Just Mail It with Perl

72 November 2004 www.linux-magazine.com

Perl: Open Office AccessPROGRAMMING

Figure 1: The Open Office document template letter.sxw uses
placeholders, which are replaced dynamically by text strings.
A Perl script does the actual replacement work.

replaces these values as previously
defined. The program then uses the set-
Text() method (line 95) to write the
results back to the document, again
using a pointer to the element: $doc-
>setText($e, $text).

Text Replacement Made Easy
The second module used by Mailit, the
powerful Template Toolkit, does the
actual work of replacing the text. Tem-
plate Toolkit is the new “in” module for
Web applications; it fills designer-styled
HTML templates with dynamic data. In
line 71, Mailit creates a Template object.
The %vars hash defined in line 73
assigns dynamic values to the placehold-
ers in the document. In Mailit, the
Template module process() method,
which is called next, expects three para-
meters:
• A string with the template text
• A reference to the %vars hash
• A reference to a function, which

process() calls after completing text
replacement, passing it the result
string.

The last of these three is optional, but it
makes sense in our example, as Mailit
can use it to call setText() and pass the
modified text to the Open Office docu-
ment. save in line 109 stores the
document in a new temp file, which was
created by the File::Temp module in line
102.

File::Temp is a Cadillac among temp-
file modules. This module’s major
strength is its ability to create temporary
files without colliding with existing files.
Programmers simply select the directory
where they want to store the files (DIR
=> '/tmp'), the file suffix (SUFFIX =>
'.sxw'), and a template for naming the
files. TEMPLATE => 'ooXXXXX' starts
the file name with oo (for Open Office),
and then adds five random characters.
The full name of a temp file would look

like the following:
/tmp/oo2hkss.sxw

The UNLINK pa-
rameter tells the
module to delete
the file when the
corresponding ob-
ject is removed.
The module then
returns a reference
that can be used

as a file handle, and which converts to
the tempfile name if interpolated within
a string.

The tried and trusted Date::Calc mod-
ule, the fourth on our list, helps Mailit to
ascertain the current date and convert it
to the local format Month XX, Year. To
do so, the module first sets the locale
Language(Decode_Language("Eng-
lish")); and then calls the Date_to_Text()
function to convert the number returned
by the Today() function to the name of
the month.

Human-Readable Address
Database
Mailit uses an address database to
retrieve the multiple-line recipient
address, which replaces the [% recipient
%] placeholder in the document.

The choice of a format for a simple
address database was one of the most
important issues while implementing
Mailit. There are so many options, and
XML is probably one of the better ones.
This said, the excessively triangular
structures that XML uses impact its read-
ability and can cause
headaches for human
readers.

In contrast to XML,
Brian Ingerson’s YAML
(YAML Ain’t Markup Lan-
guage) is not only easy to
parse but easy on the eye.
In YAML, an address data-
base that uses mnemonics
to index its records, and
assigns values to name,
street, and city, would look
like this:

fred:
- Fred Davis
- 123 Any Ave
- Lawrence KS U

66044

julie:
- Julie Jones
- 7 Lincoln
- Barnard KS 67418

When the filename is passed to the
YAML Perl module’s LoadFile() function,
the function returns a pointer to a hash,
which contains the mnemonic as a key,
and the entries as pointers to arrays:

01 {
02 'julie'=> [
03 'Julie Jones',
04 '7 Lincoln',
05 'Barnard KS 67418'
06],
07 'fred' => [
08 'Fred Davis',
09 '123 Any Ave',
10 'Lawrence KS 66044'
11], ...
12 }

YAML can do a lot more. As the name
suggests, YAML is not a markup
language but rather a flexible data
serializer capable of converting Perl’s
deeply nested core data structures into
easily readable ASCII texts and then
importing them back to Perl after manip-
ulation.

In the Mail
Mailit expects the text version of the let-
ter, either as a filename or as input via
stdin. mailit letter.txt and cat letter.txt |
mailit have exactly the same effect, as

73www.linux-magazine.com November 2004

PROGRAMMINGPerl: Open Office Access

Figure 3: The document to be printed, after Mailit has completed
its work on the template (Figure 1): subject line and body text from
the plain text in Figure 2 have been inserted, as well as the
addressee and the date.

Figure 2: The text version of the letter in the vi editor. The first paragraph
provides the subject, and the remaining paragraphs contain the body text.

mailit letter.txt
[1] julie
[2] fred
[3] zephy
Recipient [1]> 1
Preparing letter for Julie Jones
Printing /tmp/ooGd8H3.sxw

To print the temporary document, the
program simply calls Open Office in line
114. The -p option tells Open Office not
to launch the GUI, but instead send the

*.sxw file to the standard printer. When
the file is printed, you will find a per-
fectly formatted letter ready for the mail.
But this isn’t like the Internet, so you’ll
need to buy a stamp. ■

line 40 uses Perl’s magic input diamond.
The regular expression in line 45 sepa-
rates the first paragraph from the rest of
the letter and stores the corresponding
segments separately in $subject and
$body.

The pick() function defined in line 118
expects a list of mnemonics for recipi-
ents and presents them to the user as a
numbered list, prompting the user to
pick a number to select an address. A
typical Mailit session looks like this:

74 November 2004 www.linux-magazine.com

Perl: Open Office AccessPROGRAMMING

[1] Listings: http://www.linux-magazine.
com/Magazine/Downloads/48/Perl

[2] OpenOffice project homepage:
http://openoffice.org

INFO

001 #!/usr/bin/perl
002 #############################
003 # mailit -- Print letters
004 # with OpenOffice
005 # Mike Schilli, 2004
006 # (m@perlmeister.com)
007 #############################
008 use warnings;
009 use strict;
010
011 my $CFG_DIR =
012 "$ENV{HOME}/.mailit";
013 my $OO_TEMPLATE =
014 "$CFG_DIR/letter.sxw";
015 my $ADDR_YML_FILE =
016 "$CFG_DIR/addr.yml";
017 my $OO_EXE =
018 "$ENV{HOME}/ooffice/soffice";
019
020 use OpenOffice::OODoc;
021 use Template;
022 use YAML qw(LoadFile);
023 use File::Temp;
024 use Date::Calc qw(Language
025 Date_to_Text

Decode_Language
026 Today Date_to_Text);
027
028 Language(
029 Decode_Language("English")
030);
031 my ($year, $month, $day) =
032 Today();
033
034 my $doc =
035 OpenOffice::OODoc::Text
036 ->new(
037 file => $OO_TEMPLATE,);
038
039 # Read from STDIN or file
040 my $data = join '', <>;
041
042 # Split subject and body
043 my ($subject, $body) =
044 ($data =~
045 /(.*?)\n\n(.*)/s);
046

047 # Remove superfluous blanks
048 my $text;
049 for my $paragraph (
050 split /\n\n/, $body)
051 {
052 $paragraph =~ s/\n/ /g;
053 $text .= "$paragraph\n\n";
054 }
055
056 my $yml =
057 LoadFile($ADDR_YML_FILE);
058 my $nick = pick(
059 "Recipient",
060 [keys %$yml]
061);
062
063 my $recipient =
064 $yml->{$nick};
065
066 print
067 "Preparing letter for ",
068 $recipient->[0], "\n";
069
070 my $template =
071 Template->new();
072
073 my %vars = (
074 recipient => join(
075 "\n", @$recipient
076),
077 subject => $subject,
078 text => $text,
079 date =>
080 Date_to_Text(
081 $year, $month, $day),
082);
083
084 for my $e (
085 $doc->getTextElementList()
086) {
087
088 my $text_element =
089 $doc->getText($e);
090
091 $template->process(
092 \$text_element,
093 \%vars,

094 sub {
095 $doc->setText($e,
096 $_[0]);
097 }
098);
099 }
100
101 my $oo_output =
102 File::Temp->new(
103 TEMPLATE => 'ooXXXXX',
104 DIR => '/tmp',
105 SUFFIX => '.sxw',
106 UNLINK => 1,
107);
108
109 $doc->save(
110 $oo_output->filename);
111
112 print
113 "Printing $oo_output\n";
114 system(
115 "$OO_EXE -p $oo_output");
116
117 #############################
118 sub pick {
119 #############################
120 my($prompt, $options) = @_;
121
122 my $count = 0;
123 my %files = ();
124
125 foreach (@$options) {
126 print STDERR "[",
127 ++$count, "] $_\n";
128 $files{$count} = $_;
129 }
130
131 print STDERR
132 "$prompt [1]> ";
133 my $input = <STDIN>;
134 chomp($input);
135
136 $input = 1
137 unless length($input);
138 return "$files{$input}";
139 }

Listing 1: mailit

