
tions by hand, however, can be error-
prone. To automate the process, CPAN
offers a module that helps juggling with
formulas.

Let’s look at a simple formula as our
first example. In the UK and the US,
automobile manufacturers quote con-

sumption figures in miles per gallon.
This seems strange to people living in
continental Europe, who expect these
figures in liters of gasoline per 100 kilo-
meters traveled. Thus, in continental
Europe, a higher figure shows poor con-
sumption.

Helping the Europeans
Understand
Our task is to convert typical miles per
gallon consumption figures into conti-
nental liters/100 kilometer figures. The
mpgal script in Listing 1 uses the
Math::Algebra::Symbols module from
CPAN and defines two symbols, $gallons
and $miles. The formula is built up step
by step, starting in line 16. The expres-
sion defines a gallon as 3.7854118 liters.

There are two things to watch out for:
firstly, Math::Algebra::Symbols in the
current version 1.16 does not handle
long floating point values gracefully,
forcing programmers to use fractions
instead. Secondly, $liters specifies the
number of liters consumed. Thus, we

Throughout our lives we are contin-
ually confronted with problems
that use a variable x. No matter

what you are doing, whether attempting
to calculate your fuel consumption, or
looking at hares and foxes, the principles
of algebra can be applied. Solving equa-

Millions of students shudder at the

thought of algebra classes – they are

just so unreal. Instead of poring over

your formula sheet, why not let Perl

come up with the answers? This issue

shows a new module to solve

symbolic equations and another one

to draw neat graphs to match.

BY MICHAEL SCHILLI

Perl modules help solving and plotting formulas

Easy Algebra

70 September 2004 www.linux-magazine.com

Perl: Algebra & GraphsPROGRAMMING

01 #!/usr/bin/perl
02 #############################
03 # mpgal - miles/gallon =>
04 # liters/100km
05 # Mike Schilli, 2004
06 # (m@perlmeister.com)
07 #############################
08 use warnings;
09 use strict;
10
11 use Math::Algebra::Symbols;
12
13 my ($gallons, $miles) =
14 symbols(qw(gallons miles));
15
16 my $liters = $gallons *

17 37854118/10000000;
18 my $kilometers = $miles *
19 1609344/1000000;
20 my $usage = $liters /
21 $kilometers * 100;
22
23 print “Formula: $usage\n”;
24
25 for $miles (qw(20 30 40)) {
26
27 $gallons = 1;
28
29 printf “$miles m/gal: “ .
30 “%4.1f l/100km\n”,
31 eval $usage;
32 }

Listing 1: mpgal



need to multiply the number of gallons
by 3.7854118. Two gallons thus corre-
spond to 7.5708236 $liters. The same
principle applies to kilometers and miles,
where a mile is defined as 1.609344 kilo-
meters.

The formula in line 20 provides the
fuel consumption per 100 kilometers. As
we have already defined formulas for
$liters and $kilometers in the script,
Math::Algebra::Symbols substitutes the
symbols and generates an equation that
only needs $gallons and $miles. Line 23
outputs the results:

Formula: 94635295/402336*U
$gallons/$miles

Math::Algebra::Symbols uses fractional
maths to cancel down the constants.
Mpgal then assigns values to the vari-
ables $gallons and $miles to provide real
values for the formula, and calls eval
$usage in line 31 to apply the formula.
The script then prints typical consump-
tion figures in comparison:

20 m/gal: 11.8 l/100km
30 m/gal: 7.8 l/100km
40 m/gal: 5.9 l/100km

Sure, a simple Perl function could have
done this easily. However, Math::
Algebra::Symbols can even resolve vari-
ables in more complex formulas, as the
example in Listing 2 shows.

Hares and Foxes
The next task is is a classical text-based
problem: At a distance of 10 meters, a

fox notices a hare running away at a con-
stant speed of 5 meters per second, and
takes up the pursuit. The fox accelerates
at 14 meters per second/per second.
How long does it take for the fox to catch
up with the hare?

To solve this problem, the Race pro-
gram in Listing 2 defines the symbol $t
for the elapsed time in seconds, and
describes the distance covered by the
hare and the fox in relation to the
elapsed time (lines 14 and 15):

my $hare = 10 + 5 * $t;
my $fox = 7 * $t * $t;

The hare has a head start of 10 meters,
and the distance covered can be derived
by applying the formula for constant
speed (s = v * t). At a given time t, the

hare will have covered
a distance of 10 + 5 *
t, whereas applying the
formula for constant
acceleration (s = a / 2
* t2) tells us that the
fox will have caught up
exactly 7 * t2 meters.
The fox catches the
hare when the two dis-
tances are equal, that
is at the point where
the equation in line 17
returns a value of zero.

To work this out on
paper, I would need to
solve a quadratic equa-
tion, and that would

mean hunting for that formula sheet
from way back in my school days. But
thanks to Math::Algebra::Symbols, we
can resolve $gotcha simply by applying
the $gotcha->solve(“t”) method to $t. As
we are solving a quadratic equation, this
returns a reference to an array with two
symbolic equations (in line 20):

Solution: 1/14*sqrt(305)+5/14
Solution: -1/14*sqrt(305)+5/14

As negative time values have no practi-
cal effect on the well-being of the hare,
we can discard the second result in line
25. To transform the solution into a float-
ing point number, Perl’s eval is used in
line 23.

Unfortunately for the hare, the chase is
over after about 1.60 seconds. After set-
ting the symbolic variable $t to this value
in line 30, we also have the distance cov-
ered by the fox: eval $fox returns
approximately 18.02 meters.

Graphics Wizardry
Listing 3 shows a graphic version of the
chase, as shown in Figure 1. The
Imager::Plot module, and a few lines of
Perl code, allow you to create profes-
sional plots in various image formats.
Line 14 creates a new Imager::Plot object
using the tahoma.ttf Truetype font in the
specified path for the legends. Your
installation might vary, please adjust the
path accordingly.

The for loop starting in line 24, iterates
in steps of 0.01 through the X values 0.0

71www.linux-magazine.com September 2004

PROGRAMMINGPerl: Algebra & Graphs

01 #!/usr/bin/perl
02 #############################
03 # race - Fox chasing a hare
04 # Mike Schilli, 2004
05 # (m@perlmeister.com)
06 #############################
07 use warnings;
08 use strict;
09
10 use Math::Algebra::Symbols;
11
12 my ($t) = symbols(qw(t));
13
14 my $hare = 10 + 5 * $t;
15 my $fox = 7 * $t * $t;
16
17 my $gotcha = ($hare - $fox);

18
19 for my $solution
20 (@{$gotcha->solve(“t”)}) {
21 print “Solution: “,
22 “$solution\n”;
23 my $val = eval $solution;
24 if($val < 0) {
25 print “Discarded\n”;
26 next;
27 } else {
28 printf “%.2f seconds\n”,
29 $val;
30 $t = $val;
31 printf “%.2f meters\n”,
32 eval $fox;
33 }
34 }

Listing 2: race

Figure 1: With its constant acceleration, the fox catches the hare, which
is running away at a constant speed, after about 1.6 seconds, despite
the hare’s head start of 10 meters. Two Perl modules simplify the task
of programming the function and provide a plot of the results.



the graph of y = t3 -
3t2 - 3t + 1. Its two
amplitudes show local
maximum and mini-
mum values. At school
you are taught that the
gradient of the curve at
these points is zero. To
be able to determine
the corresponding X
values, you need to dif-
ferentiate the function,
make its result equal to
zero, and resolve the
equation created in this
step. Fortunately, Math
::Algebra::Symbols can

differentiate simple functions:

my ($x) = symbols(‘x’);

my $y = $x**3 - 3*$x**2 - 3U
*$x + 1;
my $diff = $y->d(‘x’);

my $extrema = $diff->solve(‘x’);
print eval($_), “\n” U

for @$extrema;

The $y->d(‘x’) method call differenti-
ates the function defined in $y to $x,
transforming the cubic polynomial into a

quadratic. The call to the solve() method
solves the latter and returns a reference
to an array with two elements, which
eval transforms into floating point val-
ues, as seen previously:

-0.414213562373095
2.41421356237309

That gives us the x-values of the
extremes. Math::Algebra::Symbols can
also handle any number of trigonometric
functions, although it does tend to choke
on more complex structures.

Caution, Men at Work!
Math::Algebra::Symbols and Imager::Plot
are both available from CPAN, and are
excellent for messing around with
mathematical puzzles. Math::Algebra::
Symbols is still very much alpha, but its
author, Philip Brenan, is continuously
improving it. Maybe, one day, it will be
as powerful as Mathematica. The moral
of today’s math lesson is: Do your math,
and learn something for life! ■

through 2.0, creating three arrays: @t for
the X axis values, and @hare or @fox for
the location values for the hare and the
fox. The location values are mapped to
time values by applying the motion for-
mulas.

Line 32 inserts the green line for the
hare into the coordinate system, lines 44
and following add the red line for the
fox. The Render function in line 69 han-
dles the drawing, and write in line 72
writes the whole thing to a PNG file.

The fox and hare task doesn’t exhaust
the range of features that Math::Alge-
bra::Symbols has to offer. Figure 2 shows

72 September 2004 www.linux-magazine.com

Perl: Algebra & GraphsPROGRAMMING

[1] Listings for this article:
http://www.linux-magazine.com/
Magazine/Downloads/46/Perl

INFO

01 #!/usr/bin/perl
02 #############################
03 # graph — Graph of fox/hare
04 # chase
05 # Mike Schilli, 2004
06 # (m@perlmeister.com)
07 #############################
08 use strict;
09 use warnings;
10
11 use Imager;
12 use Imager::Plot;
13
14 my $plot = Imager::Plot->new(
15 Width => 550,
16 Height => 350,
17 GlobalFont =>
18 ‘/usr/share/fonts’ .
19 ‘/truetype/tahoma.ttf’);
20
21 my (@t, @hare, @fox);
22
23 # Generate function data
24 for(my $i = 0.0; $i < 2.0;
25 $i += 0.01) {

26 push @t, $i;
27 push @hare, 10 + 5 * $i;
28 push @fox, 7 * $i * $i;
29 }
30
31 # Add hare plot
32 $plot->AddDataSet(
33 X => \@t,
34 Y => \@hare,
35 style => {
36 marker => {
37 size => 2,
38 symbol => ‘circle’,
39 color =>
40 Imager::Color->new(
41 ‘green’)}});
42
43 # Add fox plot
44 $plot->AddDataSet(
45 X => \@t,
46 Y => \@fox,
47 style => {
48 marker => {
49 size => 2,
50 symbol => ‘circle’,

51 color =>
52 Imager::Color->new(
53 ‘red’)}});
54
55 my $img = Imager->new(
56 xsize => 600,
57 ysize => 400);
58
59 $img->box(filled => 1,
60 color => ‘white’);
61
62 # Add text
63 $plot->{‘Ylabel’} =
64 ‘Distance’;
65 $plot->{‘Xlabel’} = ‘Time’;
66 $plot->{‘Title’} =
67 ‘Fox vs. hare’;
68
69 $plot->Render(Image => $img,
70 Xoff => 40, Yoff => 370);
71
72 $img->write(
73 file => “graph.png”);

Listing 3: graph

Figure 2: The plot of the polynomial t3 - 3t2 - 3t + 1. The
Math::Algebra::Symbols Perl module helps programmers who are too
lazy to do the math involved, to determine maxima and minima.


