
energize and schmoop factors in the two
upper button bars to play tracks they
have already rated. Clicking on Play
Rated creates a playlist using songs with
matching ratings from the database, and
goes on to play the list in random order.

You can select Play
Next and Play Previ-
ous to jump to the
next track or back to
the previous track.

To rate new tracks,
users simply click the
Random Rate button.
Rateplay will then
create a playlist of
previously unrated
songs and play the
list. While this is hap-
pening, users can set
the levels for each
track using the but-
ton bar at the bottom
of the window. You
can assign only one
energize and one

schmoop level per track. Clicking on
Rate stores the values in the database
and tells Rateplay to move on to the next
file.

By Twos and Threes
Rateplay uses several Perl modules. In
addition to the popular POE and GTK
modules [2] for a smooth GUI-based
interface, we will be using the Musicus
[3] command line player by Robert
Muth, a C++ program based on the
dynamic libraries of the Xmms player.

The POE::Component::Player::Musicus
module (this is abbreviated to PoCo::
Player::Musicus in the following sec-
tions) by Curtis Hawthorne integrates
the MP3 player into the POE environ-
ment, allowing the GUI to remote-control
the player smoothly.

Rateplay uses the object-oriented
Class::DBI abstraction to store ratings,
using an SQLite database under the hood
(see [4]). SQLite can generate a profes-
sional database in a single file. Of course
the DBI series at CPAN has a Perl module
to match: DBD::SQLite. In fact, SQLite is
a plain old SQL database. To discover
how many rated songs Rateplay has in
its rated_songs table, users can run the
command line sqlite tool to access the
rp.dat database file created by Rateplay,
and issue the following SQL command:

$ sqlite rp.dat
SQLite version 2.8.12
Enter ".help" for instructions
sqlite> select count(*) from U

rated_songs;
887

In our example, there are 887 rated
songs. Enough tracks to generate amaz-
ingly cool playlists!

Rateplay in Detail
The Rateplay program is quite extensive.
Listing 1 shows the source code, which
you can also download from [1]. The
configuration lines, 10 through 13, define
the path to the database file (using the
$DB_NAME variable to do so), and the

Every large collection of MP3s
ripped from CDs has undreamt of
treasures slumbering in its depths.

A computer-aided selector can dig those
hidden treasures out from among thou-
sands of MP3 files, allowing for amazing
compilations based on sim-
ple criteria.

The Perl script we will be
looking at in this month’s
column, rateplay, plays the
user a selection of tracks in
random order. The user
then rates the tracks accord-
ing to two criteria: the
energize factor, and the
schmoop factor. The ener-
gize factor describes how
lively a track is, and
schmoop how laid back. On
a scale from one to five,
“Thunderstruck” by AC/DC
might have an energize fac-
tor of five and a schmoop
factor of one. “Don’t Know
Why” by Norah Jones
would have an energize factor of one
and a schmoop factor of five.

Whenever a user rates a track, the
path to the song and both factors are
stored in a database. After collecting a
number of evaluations the script can cre-
ate and play a playlist in response to a
request such as “play a few fast tracks,
but don’t scare my girlfriend off”.

GUI-based Interface
Figure 1 shows the script in action.
Music fans just need to select acceptable

Depending on their current mood, music fans may fancy a bit

of rock, or some easy listening pop. An MP3 player with a GTK-

based graphical interface selects tracks to match your mood,

creates a playlist, and plays the tracks. The Perl Object Environ-

ment keeps everything running smoothly.

BY MICHAEL SCHILLI

Categorizing MP3s and creating playlists

DJ Training

64 August 2004 www.linux-magazine.com

Perl: Playlist selectingPROGRAMMING

Figure 1: Rateplay playing songs
with energize levels between
three and five and schmoop levels
one to three. The current track is a
heavy metal song with an ener-
gize level of five and a schmoop
value of one.

directory (in $SONG_DIR), in which the
find program will search recursively for
files ending in .mp3.

The global arrays, @PLAY_ENERG and
@PLAY_SCHMO, contain the values for
the song selection checkboxes at the top
of the GUI. In contrast to this, the scalar
values of $RATE_ENERG and $RATE_
SCHMO reflect the state of the radio but-
tons at the bottom of the window, and
expect values between one and five for
the energize and schmoop factors. The
@RATE_ENERG_BUTTONS and @RATE_
SCHMO_BUTTONS arrays contain the
radio button objects as array elements,
allowing the GUI to set the values stored
in the database for a track.

The Rateplay::DBI class in line 33 ff.
inherits from Class::DBI and defines the
object-oriented abstraction of the SQLite
database. If the database does not exist
(in SQLite, this is indicated by the fact
that the corresponding file does not
exist), the SQL code in line 47 ff. creates
the database file, and the rated_songs
table with the columns path (path to
MP3 file), energize (for the energize
level) and schmoop (schmoop level). The
execute method in line 55 actually makes
it happen.

Pulling in Class::DBI::AbstractSearch
in line 37 adds extended queries to what
Class::DBI already provides for a class
derived from it. Later on, this will be put
to action via Rateplay::Song->search_
where(), which executes a SQL state-
ment with a WHERE clause. The
Rateplay::Song class in line 59 ff. defines
the OO abstraction of the table
rated_songs. Isn’t it nice to have the rest
of the script 100% free of any SQL state-
ments?

Using POE to Control the MP3
Player
The main program is contained in the
main package starting in line 70. It
defines the POE session, which runs the
GUI and the player. The array referenced
by the package_states parameter creates
a number of functions which are defined
later in the script and called by POE
events with the same names. For exam-
ple, whenever the main program calls
the player’s getpos() method, the player
responds with the position in the current
track by sending a getpos event to the
main POE session. The package_states

reference just mentioned tells the main
session to jump to the getpos() function
defined in line 96 ff. in this case. Figure 2
shows you what the complete session
looks like and which discrete states it
consists of.

A similar thing happens with get-
infocurr. According to the PoCo::Player::
Musicus documentation, if someone calls
the player object’s getinfocurr() method,
it will call back into the main session,
passing artist, track name, and some
MP3 tag information on the current
track. Lines 111 and 113 in the callback
function getinfocurr update the artist and
track name display in the GUI.

Whenever the player needs to play a
new track, Rateplay sends a song event
to the main session, like the one shown
in line 415. The song event in turn has
been defined to call the song() function
shown in lines 118 ff.. It grabs the path
to the MP3 file as POE’s first argument
ARG0, then stops the player and immedi-
ately points it at the new MP3 file to be
played.

The scan_mp3s event is triggered in
line 91 shortly after the system launch; it
tells the script to jump to the scan_mp3s
function defined in line 128. scan_mp3s
calls retrieve_all() to retrieve all rated
songs from the database and stores them
as keys in the global hash %RATED. It
then goes on to spawn a child process in
a PoCo::Child session; the child process
calls the external find command to dis-
cover MP3 files on the hard disk. When
find discovers a file, it writes the path to
stdout.

The session then follows the event def-
inition in line 139 (and the package_
states definition in line 79) and jumps to
the mp3_stdout() function, which is
defined in line 444 and following. It
appends the filename to the global array
@MP3S, if the user has not yet rated the
file. Line 455 updates the status display
for the current search. As described in
[2], POE uses unusual parameter con-
stants. For example, ARG0 is a constant
holding the index for the position of the
first parameter in @_ passed to the

65www.linux-magazine.com August 2004

PROGRAMMINGPerl: Playlist selecting

Figure 2: POE makes the program jump between various states. The PoCo processes run in
parallel. Double arrows indicate temporary transitions to states interacting with separated
processes.

scan_mp3s

mp3_stdout

songpoll_playergetpos

getinfocurr

PoCo::Child

PoCo::Player::Musicus

POE/GTK

_start

getpos()

play()
getinfocurr()

polling. It is bound to the poll_player
event and sends a getpos() request to
Musicus. In response to the request, the
Musicus POE component sends a getpos
event back to the main session. To close
the polling loop, line 85 tells the kernel
to trigger the poll_player event again one
second later. The getpos() callback func-
tion defined in line 96 ff. updates the
global $POS variable which stores an
integer value for the current position
within the current song.

If the previous value of $POS was posi-
tive, and the current value is negative, it
is safe to assume that the player has just
finished playing a track, and thus needs
to call the next_in_playlist() function

defined in line 390. This function
extracts the first element in the global
array @PLAYLIST, moves the element to
the end of the list, and passes it to the
player for output in line 415. In contrast,
if next_in_playlist() is passed a parame-
ter holding a true value, the script will go
backwards and play the previous song
instead.

If the result is the same song, due to
quickly skipping back and forward, line
408 moves one step further. For each
new song that is played, song() calls the
function defined in line 420 and follow-
ing, update_rating(). It uses the search()
method to check the database for a song
rating, and set the radio buttons accord-

event. When PoCo::Child enters the call-
back, the first parameter is a reference to
a hash that contains the stdout line
grabbed by the child process. Lines 451
and 453 show how to dig it up under the
hash’s key out.

Unfortunately, PoCo::Player::Musicus
does not trigger an event when the
player finishes playing a track. This
means that Rateplay has to query the
player at regular intervals, using getpos()
to discover the current position within
the track. If a negative value is returned,
this indicates that Musicus is idling,
ready to play new songs. To catch this,
the anonymous function defined in line
83 and following implements periodic

66 August 2004 www.linux-magazine.com

Perl: Playlist selectingPROGRAMMING

Listing 1: rateplay
001 #!/usr/bin/perl
002 #############################
003 # rateplay - Rate & Play MP3s
004 # Mike Schilli, 2004
005 # (m@perlmeister.com)
006 #############################
007 use strict;
008 use warnings;
009
010 our $DB_NAME ="/data/rp.dat";
011 our $SONG_DIR=
012 "/ms1/SONGS/pods";
013 our $FIND = "/usr/bin/find";
014
015 use Gtk;
016 use POE;
017 use Class::DBI;
018 use
POE::Component::Player::Musicus;
019 use
Algorithm::Numerical::Shuffle
qw(shuffle);
020
021 my (%GUI, %RATED, $TAG,
022 $SONG, @PLAYLIST, @MP3S);
023 my @PLAY_ENERG =
024 (0, 0, 0, 0, 0);
025 my @PLAY_SCHMO =
026 (0, 0, 0, 0, 0);
027 my $RATE_ENERG = 0;
028 my $RATE_SCHMO = 0;
029 my @RATE_ENERG_BUTTONS = ();
030 my @RATE_SCHMO_BUTTONS = ();
031
032 #############################
033 package Rateplay::DBI;
034 #############################
035 use base q(Class::DBI);
036 use

037 Class::DBI::AbstractSearch;
038
039 __PACKAGE__->set_db(
040 'Main',
041 "dbi:SQLite:$main::DB_NAME",
042 'root', '');
043
044 if (!-e "$main::DB_NAME") {
045 __PACKAGE__->set_sql(
046 create => q{
047 CREATE TABLE rated_songs (
048 path VARCHAR(256)
049 PRIMARY KEY NOT NULL,
050 energize INT,
051 schmoop INT
052)});
053
054 __PACKAGE__->sql_create()
055 ->execute();
056 }
057
058 #############################
059 package Rateplay::Song;
060 #############################
061 use base q(Rateplay::DBI);
062
063 __PACKAGE__->table(
064 'rated_songs');
065 __PACKAGE__->columns(All =>
066 qw(path energize schmoop)
067);
068
069 #############################
070 package main;
071
072 my $PLAYER =
POE::Component::Player::Musicus-
>new();
073

074 POE::Session->create(
075 package_states => [
076 "main" => [
077 qw(getpos getinfocurr
078 mp3_stdout song
079 scan_mp3s)]],
080
081 inline_states => {
082 _start => \&my_gtk_init,
083 poll_player => sub {
084 $PLAYER->getpos();
085 $poe_kernel->delay(
086 'poll_player', 1);
087 }});
088
089 $poe_kernel->post("main",
090 "poll_player");
091 $poe_kernel->post("main",
092 "scan_mp3s");
093 $poe_kernel->run();
094
095 #############################
096 sub getpos {
097 #############################
098 our $POS;
099
100 next_in_playlist()
101 if defined $POS
102 and $POS > 0
103 and $_[ARG0] < 0;
104 $POS = $_[ARG0];
105 }
106
107 #############################
108 sub getinfocurr {
109 #############################
110 $TAG = $_[ARG0];
111 $GUI{artist}
112 ->set($TAG->{artist});

ing to the energize and schmoop values
found. If no ratings are present, it dis-
plays the smallest possible values. Thus,
while playing a rated list, the user sees a
rating for each song, and can correct it if
needed. To do so, users simply set the
desired values and click on Rate.

Good Taste
The function select_songs() defined in
line 369 ff. selects tracks and composes a
playlist based on the checkbox values for
energize and schmoop set in the GUI.
The @PLAY_ENERG and @PLAY_
SCHMO arrays each contain five ele-
ments. If the corresponding checkbox at
the top of the GUI is checked, the ele-

ment has a value of 1; if not, it has
a value of 0. Let’s assume that @PLAY_
ENERG contains (0,0,1,1,0); this indi-
cates that checkboxes number three
and four are checked, and the others are
not.

Line 371 extracts the desired energize
values from the array and stores them in
@energ. The call to search_where() in
line 382 adds an additional (and invalid)
value of zero, to prevent search_where()
from acting up if the @energ array is
empty. search_where() uses a logical
AND to link both criteria for energize
and schmoop; this is equivalent to
WHERE a AND b in SQL. In contrast to
this, the element values in the arrays

passed to the function are ORed. Thus,
the following code will sort songs to
reflect the user’s taste:

Rateplay::Song->search_where({
energize=> [2, 3, 0],
schmoop => [1, 0]});

The corresponding SQL request looks
like this:

SELECT * from rated_songs
WHERE energize = 2 OR

energize = 3 OR
energize = 0

AND schmoop = 1 OR
schmoop = 0

67www.linux-magazine.com August 2004

PROGRAMMINGPerl: Playlist selecting

Listing 1: rateplay
113 $GUI{title}
114 ->set($TAG->{title});
115 }
116
117 #############################
118 sub song {
119 #############################
120 $SONG = $_[ARG0];
121 $PLAYER->stop();
122 $PLAYER->play($SONG);
123 $PLAYER->getinfocurr();
124 update_rating($SONG);
125 }
126
127 #############################
128 sub scan_mp3s {
129 #############################
130 %RATED =
131 map { $_->path() => 1 }
132 Rateplay::Song
133 ->retrieve_all();
134
135 my $comp =
136 POE::Component::Child
137 ->new(
138 events => {
139 'stdout' => 'mp3_stdout'
140 });
141
142 $comp->run($FIND,
143 $SONG_DIR);
144 }
145
146 #############################
147 sub add_label {
148 #############################
149 my ($parent, $text,
150 @coords) = @_;
151

152 my $lbl= Gtk::Label->new();
153 $lbl->set_alignment(
154 0.5, 0.5);
155 $lbl->set($text);
156
157 if (ref $parent eq
158 "Gtk::Table") {
159 $parent->attach_defaults(
160 $lbl, @coords);
161 } else {
162 $parent->pack_start(
163 $lbl, 0, 0, 0);
164 }
165
166 return $lbl;
167 }
168
169 #############################
170 sub my_gtk_init {
171 #############################
172 my @btns = (
173 "Play Rated", "Play Next",
174 "Play Previous",
175 "Random Rate"
176);
177
178 $poe_kernel->alias_set(
179 'main');
180
181 $GUI{mw} =
182 Gtk::Window->new();
183 $GUI{mw}->set_default_size(
184 150, 200);
185
186 $GUI{vb} =
187 Gtk::VBox->new(0, 0);
188
189 $GUI{$_} =
190 Gtk::Button->new($_)

191 for @btns;
192
193 my $tbl =
194 Gtk::Table->new(2, 6);
195 $GUI{vb}->pack_start(
196 $tbl, 1, 1, 0);
197
198 add_label($tbl,
199 'Energize', 0, 1, 0, 1);
200 add_buttons(
201 $tbl, sub {
202 $PLAY_ENERG[$_[1]] ^= 1;
203 }, 0);
204 add_label($tbl, 'Schmoop',
205 0, 1, 1, 2);
206 add_buttons(
207 $tbl, sub {
208 $PLAY_SCHMO[$_[1]] ^= 1;
209 }, 1);
210
211 # Status on top of buttons
212 $GUI{status} =
213 add_label($GUI{vb}, "");
214
215 # Pack buttons
216 $GUI{vb}->pack_start(
217 $GUI{$_}, 0, 0, 0)
218 for @btns;
219
220 for (qw(artist title)) {
221 $GUI{$_} = add_label(
222 $GUI{vb}, "");
223 }
224
225 $GUI{rate_table} =
226 Gtk::Table->new(2, 6);
227 $GUI{vb}->pack_start(
228 $GUI{rate_table},0,0,0);
229

Appearances
The my_gtk_init() function defined in
line 170 and following sets up the GTK
interface. All the GUI objects are stored
under mnemonic names in a global hash
called %GUI. This groups them nicely
and ensures that they can be accessed
globally. Some functions will need to
refresh their graphical elements in a
hurry in certain situations. As in [2], we
again use two different types of GUI con-
tainers: that is Gtk::VBox and Gtk::Table,
which require us to use different packing
procedures (pack_start() and
attach_defaults()).

add_buttons() in line 312 and follow-
ing is called for both rows of checkboxes

in the top half of the GUI. The main pro-
gram passes in a reference to a different
callback function each time, which will
be called when the user clicks the corre-
sponding button. Rateplay defines the
actions for mouse events in line 254 and
following lines. The reaction to the
destroy signal (which occurs if the user
closes the application window), for
example, is to call Gtk->exit(0) and kill
the GUI.

The Play Rated ($btns[0]) button trig-
gers select_songs(), and uses next_in_
playlist() to play the next song. Play Next
and Play Previous skip forward and back,
and Random Rate ($btns[3]) calls the
shuffle function from Algorithm::Numeri-

The sort { rand < 0.5 } statement in line
379 before the map() command, mixes
up the results before sending them to the
player – after all, users want a little vari-
ety rather than the same playing order
every time.

The process_rating() function in line
355 and following uses Class::DBI‘s
find_or_create() method to search for an
entry matching the specified MP3 path in
the database. It returns the object it
finds. If it fails to find any matching
object, find_ or_create() simply creates a
new entry. The energize() and
schmoop() methods set the correspond-
ing database fields, and update() then
writes the results back to the database.

68 August 2004 www.linux-magazine.com

Perl: Playlist selectingPROGRAMMING

Listing 1: rateplay
230 add_label(
231 $GUI{rate_table},
232 'Energize', 0, 1, 0, 1);
233 attach_radio_buttons(
234 $GUI{rate_table}, sub {
235 $RATE_ENERG = $_[1] +1;
236 }, 0,
237 \@RATE_ENERG_BUTTONS);
238 add_label(
239 $GUI{rate_table},
240 'Schmoop', 0, 1, 1, 2);
241 attach_radio_buttons(
242 $GUI{rate_table}, sub {
243 $RATE_SCHMO = $_[1] +1;
244 }, 1,
245 \@RATE_SCHMO_BUTTONS);
246
247 my $rate =
248 Gtk::Button->new('Rate');
249 $GUI{vb}->pack_start(
250 $rate, 0, 0, 0);
251 $GUI{mw}->add($GUI{vb});
252
253 # Destroying window
254 $GUI{mw}->signal_connect(
255 'destroy',
256 sub { Gtk->exit(0) });
257
258 # Pressing Play Rated button
259 $GUI{ $btns[0] }
260 ->signal_connect(
261 'clicked', sub {
262 @PLAYLIST =
263 select_songs();
264 $GUI{status}->set(
265 "Playlist has "
266 . scalar @PLAYLIST
267 . " songs.");
268 next_in_playlist();

269 });
270
271 # Pressing Play Next button
272 $GUI{ $btns[1] }
273 ->signal_connect(
274 'clicked', sub {
275 next_in_playlist();
276 });
277
278 # Pressing "Play Previous"
279 $GUI{ $btns[2] }
280 ->signal_connect(
281 'clicked', sub {
282 next_in_playlist(1);
283 });
284
285 # Pressing "Random Rate"
286 $GUI{ $btns[3] }
287 ->signal_connect(
288 'clicked', sub {
289 @PLAYLIST =
290 shuffle @MP3S;
291 $GUI{status}->set(
292 "Random Rating "
293 . scalar @PLAYLIST
294 . " songs.");
295 next_in_playlist();
296 });
297
298 # Pressing "Rate" button
299 $rate->signal_connect(
300 'clicked', sub {
301 return
302 unless defined $TAG;
303 process_rating();
304 next_in_playlist();
305 }
306);
307

308 $GUI{mw}->show_all();
309 }
310
311 #############################
312 sub add_buttons {
313 #############################
314 my($table, $sub, $row)= @_;
315
316 for (0 .. 4) {
317 my $b =
318 Gtk::CheckButton->new(
319 $_ + 1);
320 $b->signal_connect(
321 clicked => $sub, $_);
322 $table->attach_defaults(
323 $b, 1 + $_, 2 + $_,
324 0 + $row, 1 + $row);
325 }
326 }
327
328 #############################
329 sub attach_radio_buttons {
330 #############################
331 my ($table, $sub, $row,
332 $buttons) = @_;
333
334 my $group;
335
336 for (0 .. 4) {
337 my $btn =
338 Gtk::RadioButton->new(
339 $_ + 1,
340 defined $group
341 ? $group : ());
342 $group = $btn;
343 $btn->signal_connect(
344 clicked => $sub, $_);
345 push @$buttons, $btn;
346 $table->attach_defaults(

cal::Shuffle to randomize the order of the
non-rated MP3s stored in the global
@MP3S array, so that the program can
offer them to the user for rating one by
one.

Finally, the callback function for the
Rate button accesses the $TAG variable
set in the getinfocurr(), which contains
the MP3 tag for the song that is currently
playing, and calls process_rating() to cre-
ate a database entry for the song to store
the selected radio button settings.

Installation
You need to install Xmms on your
machine to allow Rateplay to work with
the MP3 player. Having done so, users

can download the Musicus sources from
[3], unpack them, and enter make. Then
you need to copy the musicus binary to
/usr/bin/.

The Perl modules POE, PoCo::Player::
Musicus, are Gtk are available from
CPAN. The article at [2] has a few tips
if Gtk doesn’t install right out of the
box. Rateplay also needs the DBI,
DBD::SQLite, Class::DBI Class::DBI::
AbstractSearch, and Algorithm::Numeri-
cal::Shuffle modules. The CPAN shell
should automatically resolve any depen-
dencies that occur.

The Musicus and POE::Component::
Player::Musicus developers are working
hard on enhancing their projects. If the

current versions do not work, there are
two tar archives at [5] which are guaran-
teed to work. ■

69www.linux-magazine.com August 2004

PROGRAMMINGPerl: Playlist selecting

[1] Listings for this article:
http://www.linux-magazine.com/
Magazine/Downloads/45/Perl

[2] Michael Schilli,“Winning Team Player”:
Linux Magazine 05/04, p. 68

[3] Musicus homepage:
http://muth.org/Robert/Musicus

[4] SQLite: http://sqlite.org

[5] Fallback tarballs for Musicus and
PoCo::Player::Musicus:
http://perlmeister.com/musicus

INFO

Listing 1: rateplay
347 $btn, 1 + $_,
348 2 + $_, 0 + $row,
349 1 + $row
350);
351 }
352 }
353
354 #############################
355 sub process_rating {
356 #############################
357 my $rec =
358 Rateplay::Song
359 ->find_or_create(
360 { path => $SONG });
361
362 $rec->energize(
363 $RATE_ENERG);
364 $rec->schmoop($RATE_SCHMO);
365 $rec->update();
366 }
367
368 #############################
369 sub select_songs {
370 #############################
371 my @energ = grep {
372 $PLAY_ENERG[$_ - 1]
373 } (1 .. @PLAY_ENERG);
374
375 my @schmo = grep {
376 $PLAY_SCHMO[$_ - 1]
377 } (1 .. @PLAY_SCHMO);
378
379 return sort { rand > 0.5 }
380 map { $_->path() }
381 Rateplay::Song
382 ->search_where({
383 energize =>
384 [@energ, 0],
385 schmoop =>

386 [@schmo, 0]});
387 }
388
389 #############################
390 sub next_in_playlist {
391 #############################
392 my ($backward) = @_;
393
394 return
395 unless scalar @PLAYLIST;
396 my $path;
397
398 {
399 if ($backward) {
400 $path = pop @PLAYLIST;
401 unshift @PLAYLIST,
402 $path;
403 } else {
404 $path =
405 shift @PLAYLIST;
406 push @PLAYLIST, $path;
407 }
408 redo
409 if defined $SONG
410 and $SONG eq $path
411 and @PLAYLIST > 1;
412 }
413
414 $PLAYER->stop();
415 $poe_kernel->post('main',
416 'song', $path);
417 }
418
419 #############################
420 sub update_rating {
421 #############################
422 my ($path) = @_;
423
424 if(my ($song) =

425 Rateplay::Song->search(
426 path => $path)) {
427
428 my $e = $song->energize();
429 my $s = $song->schmoop();
430
431 $RATE_SCHMO_BUTTONS[$s-1]
432 ->activate();
433 $RATE_ENERG_BUTTONS[$e-1]
434 ->activate();
435 } else {
436 $RATE_SCHMO_BUTTONS[0]
437 ->activate();
438 $RATE_ENERG_BUTTONS[0]
439 ->activate();
440 }
441 }
442
443 #############################
444 sub mp3_stdout {
445 #############################
446 my ($self, $args) =
447 @_[ARG0 .. $#_];
448
449 return
450 if exists
451 $RATED{ $args->{out} };
452
453 push @MP3S, $args->{out};
454
455 $GUI{status}->set(
456 scalar @MP3S . " songs" .
457 " ready for rating.");
458 }

