
enough to keep us going for the time
being. Listing 1 (u – Save as Save Can)
shows a CGI script that imitates
tinyurl.com.

Hardening the Script
Of course a script that you want to pub-
lish on the Internet should not fall victim
to the first malevolent hacker that hap-
pens to stumble across it. So let’s
introduce a few security measures: 200
URLs are allowed per IP and day – that
should help prevent any evildoer from
filling up the hard disk with nonsensical
URLs. Major service providers like AOL
use the same IP to serve a large number
of customers at the same time. The value
of 200 should cover us in this situation
as well.
• The maximum size of the database file

won’t exceed a configurable value
(such as 10MBytes). When this thresh-
old is reached, the script will not
accept any new URLs for storage,
although it will still find any URLs that
have been previously defined.

• A URL cannot exceed 256 characters in
length; the script will refuse to handle
longer URLs.

• The script will log any events in a
rotating log file with a configurable
maximum size. CGI capabilities will be
provided by Lincoln Stein’s CGI mod-
ule and its CGI::Carp offshoot, with the
fatalsToBrowser tag enabled to capture
any Perl exceptions and display them
in the browser to provide debugging
information. You might want to
uncomment CGI::Carp if you put the
script into production.

If the script fails to find a url parameter
from a previously stored request, it will

display a URL input form in the browser.
A click on the Submit button sends the
URL entered by the user back to the
script as the url parameter. The script
then generates a short URL and stores
the mapping between the short form and
the full URL in its mini-database, if it has
not been previously stored. URL abbrevi-
ations look like this:

http://server.com/cgi/u/xxxx

The URL’s unique ID xxxx gets appended
to the path, it is sent to the script u,
where the CGI environment will provide
it in the $ENV{PATH_INFO} variable. If
the script receives a request like this, it
will retrieve the appropriate full URL
from the database and respond with a
redirect(), thus sending the browser
transparently to the corresponding web-
site.

Rotating Logs
Log::Log4perl qw(:easy) and the File-
Rotate appender from the Log::Dispatch
collection provide convenient logging
with the DEBUG(), INFO(), and
LOGDIE() macros. size=1000000 sets
the maximum logfile size to 1MB.
max=1 specifies that the FileRotate
appender will rotate a whole logfile
called shrink.log to shrink.log.1 when
shrink.log exceeds the 1MByte threshold.
It will not create any additional backups
to avoid using more than 2MBytes of
local disk space for the logfiles.

The persistent hash %URLS tied to
the file /tmp/shrink.dat using tie() will
not store a single key-value mapping in
listing u, but three. This is why the keys
each need a prefix:

While I was reading “Cryp-
togram”, the monthly news-
letter from security superhero

Bruce Schneier [2], I noticed that the
typically longish URLs for various cross-
references were surprisingly short. All of
them pointed to http://tinyurl.com and
ended in short and cryptic abbreviations.
So that’s how he did it. Sites like tinyurl.
com or makeashorterlink.com offer a free
service that stores long URLs and assigns
a letter/digit combination to them. Upon
request to the shortcut, Tinyurl redirects
browsers to the target URL. This led me
to register http://tinyurl.com/28uo8 re-
cently, pointing to the DVD inlay PDF for
this issue.

The whole thing is quite easily imple-
mented in Perl. A persistent hash stores
unique abbreviations as keys and regis-
tered URLs as values. As shortcuts,
instead of decimal serial numbers, it
uses groups of small letters and num-
bers, beaming us into the base 36 system
(26 letters and ten numbers). Even num-
bers of a million or more can be
represented with just four characters: for
example, 4c92 represents the decimal
number 1000000 in base 36. A four digit
number in base 36 can store 36_exp_4 =
1679616 different values – that should be

Long URLs are hard to print in magazine articles and cause problems in

emails if they exceed the 78 characters per line maximum. A CGI script

on a public server provides shortcuts.

BY MICHAEL SCHILLI

Create your own abbreviated, tinyurl.com-style URLs

Compressed Links

70 March 2004 www.linux-magazine.com

Perl: Reducing URLsPROGRAMMING

Michael Schilli works
as a Web engineer for
AOL/Netscape in
Mountain View, Cali-
fornia. He wrote “Perl
Power”for Addison-
Wesley and can be
contacted at
mschilli@perlmeister.com. His home-
page is at http://perlmeister.com.

TH
E A

UT
HO

R

• by_shrink/: abbreviation to
URL mapping

• by_url/: URL to abbreviation
• next/: next abbreviation to

assign
There are some circumstances
where the script should simply
stop – untie the permanent hash
and then quit the program. It
would be inelegant to do this
with exit(), as this could cause
problems in environments such
as mod_perl. And return() only
works if perl happens to be performing a
subroutine. I finally decided to opt for
the good old goto, which Real Program-
mers, as compared to Quiche eaters (see
[3]), are not afraid to use. This is why
the script uses goto to jump to the END
label, which is defined later.

A file cache with a definable expiry
date helps reduce the number of URLs
that a user can store per IP address and
day. The clever Cache::Cache module
provides a simple interface that uses
set() to set new entries and get() to
retrieve them. The Cache::FileCache class
derived from this module implements
this as a file tree on the disk.

Deliberately Forgetful
For every request, the script increments a
per-IP counter. When it reaches the con-
figured maximum value (200), it refuses
to handle new URL store requests by this
IP, but continues to resolve the abbrevia-
tions previously defined. Cache::FileCache
forgets about an IP after a day of inactiv-
ity, effectively resetting the counter to
zero.

However, this algorithm isn’t entirely
accurate: At worst, it could block an IP
that keeps requesting new URLs within
the daily limits for a day.

The web server’s CGI environment
uses $ENV{REMOTE_ADDR} to provide
the client’s IP address. When launched
on the command line, the script doesn’t
receive any value in $ENV{REMOTE_
ADDR}, however. This is why line 148
simply sets it to the NO_IP string in this
case.

The default_expires_in option of the
Cache::FileCache constructor provides
the interval in seconds since the last
set() after which the cache will simply
forget the entry. A true value for
auto_purge_on_get specifies that the

cache should search for expired entries
on running any get() request, and
remove them. This prevents the cache
from becoming too bloated with legiti-
mate IP addresses.

The Base 36 Universe
The base36() function defined in line
123 and following converts decimal
numbers to their base 36 equivalents.
How does this work? A number in the
decimal system is constructed as follows:

a*1 + b*10 + c*10*10 + ...

where a, b, c represent the digits of the
number in reverse order of significance.
156 is thus:

6*1 + 5*10 + 1*10*10

In contrast to this, base 36 works as fol-
lows:

a*1 + b*36 + b*36*36 + ...

The following algorithm converts a deci-
mal number d to base 36: Find the
remainder of the division d/36 (that is d
modulo 36 or d % 36). This results in the
last digit of the number in base 36. Then
divide d by 36, use the integral part of
the result, and move on to the next digit
(from right to left), repeating the previ-
ous instructions.

The base36() function first defines all
valid characters (that is the numbers 0
through 9 and the lowercase letters a
through z) in the array @chars. Its
length, determined by

my $b = @chars;

with @chars in scalar context, is unsur-
prisingly 36. The for loop then calculates

$num % $b with every iteration,
resulting in the next (right-to-left)
“digit” of the number in base 36.
The for loop’s bump-along
instruction – $num /= $b –
divides $num by $b neglecting
any floating point component,
due to the use integer pragma set
in line 127. The expression

$result .= $chars[$num % $b];

extracts the appropriate character
from the base 36 character set and adds
it to the end of the string in $result – the
number, or sequence of characters, in
the target system is thus constructed
from back to front. This is corrected by
the following:

return scalar reverse $result;

which flips the string in $result. Scalar
context is required as reverse would sim-
ply reverse the order of a list of scalars
passed to it in list context, leaving each
of them untouched.

Installation
The script requires Log::Log4perl,
Log::Dispatch::FileRotate, and Cache ::
FileCache, all of which are available on
CPAN. The paths to the logfile (line 21)
and the database file (line 12) need to be
adapted to reflect your local environ-
ment, and the script needs to be placed
in the cgi-bin directory of a web server. If
you can run the script from the com-
mand line (pay attention to execute and
write permissions for the data directo-
ries), it should work in a web browser –
but watch out for the different user ID
(this is typically nobody). So go on, be a
devil, abbreviate those URLs! ■

71www.linux-magazine.com March 2004

PROGRAMMINGPerl: Reducing URLs

[1] Listings for this article:
http://www.linux-magazine.com/
Magazine/Downloads

[2] Cryptogram:
http://www.counterpane.com/
crypto-gram.html or http://perlmeister.
com/cgi/u/3

[3] Real programmers vs. quiche-eaters,
http://www-users.cs.york.ac.uk/~susan/
joke/quiche.htm or http://perlmeister.
com/cgi/u/b

INFO

Figure 1: The compressor expects a new URL, stores the URL in its
database, and generates an abbreviation.

72 March 2004 www.linux-magazine.com

Perl: Reducing URLsPROGRAMMING

001 #!/usr/bin/perl
002 #############################
003 # Mike Schilli, 2003
004 # (m@perlmeister.com)
005 #############################
006 use warnings;
007 use strict;
008 use Log::Log4perl qw(:easy);
009 use Cache::FileCache;
010
011 my $DB_FILE =
012 "/tmp/shrinky.dat";
013 my $DB_MAX_SIZE = 10_000_000;
014 my $MAX_URL_LEN = 256;
015 my $REQS_PER_IP = 200;
016
017 Log::Log4perl->init(\ <<EOT);
018 log4perl.logger = DEBUG, Rot
019 log4perl.appender.Rot=\\
020 Log::Dispatch::FileRotate
021 log4perl.appender.Rot.

filename=/tmp/shrink.log
022 log4perl.appender.Rot.

layout=PatternLayout
023 log4perl.appender.Rot.layout.

ConversionPattern=%d %m%n
024 log4perl.appender.Rot.mode=

append
025 log4perl.appender.Rot.size=

1000000
026 log4perl.appender.Rot.max=1
027 EOT
028
029 use CGI qw(:all);
030 use CGI::Carp
031 qw(fatalsToBrowser);
032 use DB_File;
033
034 tie my %URLS, 'DB_File',
035 $DB_FILE, O_RDWR|O_CREAT,
036 0755 or LOGDIE "tie: $!";
037
038 # First time init
039 $URLS{"next/"} ||= 1;
040
041 my $redir = "";
042
043 if(exists $ENV{PATH_INFO}) {
044 # Redirect requested
045 my $num = substr(
046 $ENV{PATH_INFO}, 1);
047 $redir =
048 $URLS{"by_shrink/$num"} if
049 exists
050 $URLS{"by_shrink/$num"};
051 }
052
053 if($redir) {
054 print redirect($redir);
055 goto END;

056 }
057
058 print header();
059
060 if(my $url = param('url')) {
061
062 if(length $url >
063 $MAX_URL_LEN) {
064 print "URL too long.\n";
065 goto END;
066 }
067
068 my $surl;
069
070 # Does it already exist?
071 if(exists
072 $URLS{"by_url/$url"}) {
073 DEBUG "$url exists";
074 $surl =
075 $URLS{"by_url/$url"};
076
077 } else {
078 if(-s $DB_FILE >
079 $DB_MAX_SIZE) {
080 DEBUG "DB File full " .
081 (-s $DB_FILE) .
082 " > $DB_FILE";
083 print "We're full.\n";
084 goto END;
085 }
086
087 if(rate_limit(
088 $ENV{REMOTE_ADDR})) {
089 print "To many URLs " .
090 "from this IP.";
091 goto END;
092 }
093
094 # Register new URL
095 my $n = base36(
096 $URLS{"next/"}++);
097 INFO "$url: New: $n";
098 $surl = url() . "/$n";
099 $URLS{"by_shrink/$n"} =
100 $url;
101 $URLS{"by_url/$url"} =
102 $surl;
103 }
104
105 print a({href => $surl},
106 $surl);
107 }
108
109 # Accept user input
110 print h1("Add a URL"),
111 start_form(),
112 textfield(
113 -size => 60,
114 -name => "url",
115 -default => "http://"),

116 submit(), end_form();
117
118 END:
119
120 untie %URLS;
121
122 #############################
123 sub base36 {
124 #############################
125 my ($num) = @_;
126
127 use integer;
128
129 my @chars = ('0'..'9',
130 'a'..'z');
131 my $result = "";
132
133 for(my $b=@chars; $num;
134 $num/=$b) {
135 $result .=
136 $chars[$num % $b];
137 }
138
139 return scalar
140 reverse $result;
141 }
142
143 #############################
144 sub rate_limit {
145 #############################
146 my ($ip) = @_;
147
148 $ip = 'NO_IP'
149 unless defined $ip;
150
151 INFO "Request from IP $ip";
152
153 my $cache =
154 Cache::FileCache->new({
155 default_expires_in =>
156 3600*24,
157 auto_purge_on_get =>
158 1,
159 }
160);
161
162 my $count =
163 $cache->get($ip);
164
165 if(defined $count and
166 $count >= $REQS_PER_IP) {
167 INFO "Rate-limit: $ip";
168 return 1;
169 }
170
171 $cache->set($ip, ++$count);
172
173 return 0;
174 }

Listing 1: u – Save as Save Can

