
author covered in detail as it is one of the
games that gives you the fairest odds on
the Casino scene.

19, 20, 21 … busted!
I decided to put in some practice before
trying my luck at the Casino, and set out
to write a Perl script that would simulate

the game. The rules are as follows: the
game is played between the player and
the dealer. Several packs of 52 cards are
used. Cards are dealt singly from the so-
called “shoe”, or card holder.

The object of the game is to draw as
many cards as possible to have a hand of
exactly 21. But be careful – if you go over

Just recently I was browsing through
the books in my local bookshop
when I noticed a paperback called

“Winning Casino Play” [2], where a pro-
fessional gambler explained how to play
the Casinos in Las Vegas and Atlantic
City with a fair chance of winning.
Blackjack was one of the subjects the

Superpositions from the realm of

quantum physics will soon be avail-

able as so-called junctions in the Perl

6 core. A module is already available.

This month’s article takes a light-

hearted look at this revolutionary

concept based on a script that plays

blackjack. BY MICHAEL SCHILLI

Quantum logic in Perl and the effect it has on organized gambling

Quantum Casino

61www.linux-magazine.com January 2004

PROGRAMMINGPerl: Black Jack

01 #!/usr/bin/perl
02 ##############################
03 # play - Blackjack against Las
Vegas Dealer
04 # Mike Schilli, 2003
(m@perlmeister.com)
05 ##############################
06 use warnings; use strict;
07 use Blackjack;
09 use Term::ANSIColor
qw(:constants);
09 use Term::ReadKey;
10 $| = 1; my $total = 0;
11 my $shoe = Blackjack::Shoe-
>new(
12 nof_decks => 4);
13 {
14 if($shoe->remaining() < 52) {
15 print "Shuffling ...\n";
16 $shoe->reshuffle();
17 }
18 my $player = Blackjack::Hand-
>new(

19 shoe => $shoe);
20 my $dealer = Blackjack::Hand-
>new(
21 shoe => $shoe);
22 $dealer->draw();
23 P(RED, "D", $dealer);
24 $dealer->draw();
25 $player->draw();
26 $player->draw();
27 while(!$player->busted()) {
28 P(BLUE, "P", $player);
29 print
"([H]it/[S]tand/[Q]uit) ";
30 ReadMode 4;
31 my $move = ReadKey(0);
32 ReadMode 0;
33 print "\r";
34 last if $move =~ /^s/i;
35 exit 0 if $move =~ /^q/i;
36 $player->draw();
37 }
38 P(BLUE, "P", $player);
39 while(!$dealer->busted() and

40 $dealer->count("soft") <
17) {
41 P(RED, "D", $dealer);
42 $dealer->draw();
43 }
44 P(RED, "D", $dealer);
45 $total += $player-
>score($dealer);
46 print "Score: ",
47 $player->score($dealer),
48 ", Total: ", $total,
"\n\n";
49 redo;
50 }
51 sub P { # Print status in
color
52 print(BOLD, $_[0],
"$_[1]", "[",
53 $_[2]->count_as_string(),
"]",
54 RESET, ": ", $_[2]-
>as_string(), "\n")
55 }

Listing 1: blackjack

62 January 2004 www.linux-magazine.com

Perl: Black JackPROGRAMMING

21, you automatically lose. This is
known as being busted. The cards from
2 through 10 are valued as indicated, and
the face cards (Jack, Queen, King) are all
valued at ten points. An Ace can count
as either 1 or 11.

Watch out for Superposition!
1 or 11? Right, if you draw a 7, an 8 and
an Ace, 7+8+11=26 would bust you.
Instead you can stay in the game by
counting the Ace as 1: 7+8+1=16.

In other words, a hand does not have a
fixed value, but two overlapping states
(26,16), of which we can choose the
most favorable: 16. Imagine drawing
four Aces. This would return four possi-
ble states (4,14,24,34). But as 24 or 34
are not exactly winning hands, we are
only interested in two of them: 4, the soft
count, and 14, the so-called hard count.

Overlapping states are referred to as
superpositions in quantum physics, and
allow a particle to occupy two spaces at
the same time.

After installing the Quantum::Superpo-
sitions module by Damian Conway (it is

available from CPAN), you can create a
superposition of the numerical values
previously displayed, by calling the
any() function:

use Quantum::Superpositions;
my $count = any(4,14,24,34);

From this point on, the $count variable
appears to have four different values. A
seemingly insane logical expression,
such as

if($count == 4 and
$count == 14) {
print "Right!<\\>n";

}

will return the value true and execute the
print command. Also, logical compar-
isons such as $count <= 21 are no
longer true or false in the context of
Quantum::Superpositions, but return a
superposition of the states that match
the condition. The following syntax will
filter the irrelevant states above 21 from
the possible results which depend on
how we count the Ace (4,14,24,34):

$count = ($count <= 21);

Now $count contains only any(4,14).
That saves a lot of typing! Arithmetic
operations based on superpositions are
also quite simple to formulate as Quan-

Figure 1: A game of blackjack in the command
line

001 #############################
002 # Blackjack.pm
003 # Mike Schilli, 2003
(m@perlmeister.com)
004 #############################
005 use warnings; use strict;
006 #============================
007 package Blackjack::Shoe; #===
008 #============================
009 use
Algorithm::GenerateSequence;
010 use
Algorithm::Numerical::Shuffle
011 qw(shuffle);
012 #############################
013 sub new {
014 #############################
015 my($class, @options) = @_;
016 my $self = {nof_decks =>
1, @options};
017 bless $self, $class;
018 $self->{cards} = $self-
>reshuffle();
019 return $self;
020 }
021 #############################
022 sub reshuffle {
023 #############################

024 my($self) = @_;
025 my @cards =
026 (Algorithm::GenerateSequence-
>new(
027 [qw(Heart Diamond Spade
Club)],
028 [qw(A 2 3 4 5 6 7 8 9 10
J Q K)])
029 ->as_list()) x $self-
>{nof_decks};
030 return shuffle \@cards;
031 }
032 #############################
033 sub remaining {
034 #############################
035 my($self) = @_;
036 return scalar @{$self-
>{cards}};
037 }
038 #############################
039 sub draw_card {
040 #############################
041 my($self) = @_;
042 return shift @{$self-
>{cards}};
043 }
044 #============================
045 package Blackjack::Hand; #===

046 #============================
047 use Quantum::Superpositions;
048 #############################
049 sub new {
050 #############################
051 my($class, @options) = @_;
052 my $self = { cards => [],
@options };
053 die "No shoe" if !exists
$self->{shoe};
054 bless $self, $class;
055 }
056 #############################
057 sub draw {
058 #############################
059 my($self) = @_;
060 push @{$self->{cards}},
061 $self->{shoe}->draw_card();
062 }
063 #############################
064 sub count {
065 #############################
066 my($self, $how) = @_;
067 my $counts = any(0);
068 for(@{$self->{cards}}) {
069 if($_->[1] =~ /\d/) {
070 $counts += $_->[1];
071 } elsif($_->[1] eq 'A') {

Listing 2: Blackjack.pm

Is the Cat Dead?
If a researcher tests the truths of quan-
tum physics in the real world, multiple
states will collapse to a single state,
removing any ambiguities: This means
that Schrödingers cat [3] must either be
dead as a dodo or still alive.

This is different in Perl: You can play
around with ambiguous states without
destroying the system. To discover the
states a superposition contains, Quan-
tum::Superpositions imports the
ownstates() function, which simply
returns a list of states:

my @counts = ownstates($count);

These three functions any(), all() and
ownstates() allow a developer to build
breathtaking program constructs. The
following syntax is all you need to dis-
cover the soft count for the specified
cards, that is the minimum from
any(4,14,24,34):

my $counts = any(4,14,24,34);
my $soft =

($counts <= all(ownstatesU
($counts));

as the logical comparison uses $counts to
return a superposition of all states that
are less than or equal to all states of the
superposition – this is the classical defin-
ition of a minimum.

Perl Card Shoe Class
The implementation: The Blackjack.pm
listing contains two classes: Blackjack::
Shoe, which represents the card shoe
from which the dealer removes the cards
to be dealt up, and Blackjack::Hand,
which represents the player’s or dealer’s
hand.

The card shoe uses the CPAN Algo-
rithm::GenerateSequence module to
generate a few packs of cards. The new()
constructor accepts references to an
array, whose elements it combines. If the
first array contains all the suits
(Heart/Diamond/Spade/Club) and the
second all the values (A 2 3 4 5 6 7 8 9 10
J Q K) of a card game, the as_list()
method will return a list of combinations

tum::Superpositions will overload all
operators. If the value any(4,14) is store
in $counts,

$counts += 10;

will result in any(14,24).
Thus, any() specifies a so-called dis-

junctive superposition that can be
queried for all of its states, and will
respond correctly to logical queries for
any of those states.

The second function introduced by
Quantum::Superpositions, all(), defines
a conjunctive superposition that has all
the available states simultaneously. The
following condition is not true:

my $count = all(4,14,24,34);

if($count <= 21) {
print "None busted<\\>n";

}

as not all of the states contain values of
less than 21. In contrast, all(4,14) <=
21 would be true.

63www.linux-magazine.com January 2004

PROGRAMMINGPerl: Black Jack

072 $counts = any($counts+1,
073 $counts+11);
074 } else {
075 $counts += 10;
076 }
077 }
078 # Delete busted hands
079 $counts = ($counts <= 21);
080 # Busted!!
081 return undef if !
ownstates($counts);
082 return $counts unless
defined $how;
083 if($how eq "hard") {
084 # Return minimum
085 return int($counts <=
086 all(ownstates($counts)));
087 } elsif($how eq "soft") {
088 # Return maximum
089 return int($counts >=
090 all(ownstates($counts)));
091 }
092 }
093 #############################
094 sub blackjack {
095 #############################
096 my($self) = @_;
097 my $c = $self->count();

098 return 1 if $c == 21 and
$c == 11 and
099 @{$self->{cards}} == 2;
100 return 0;
101 }
102 #############################
103 sub as_string {
104 #############################
105 my($self) = @_;
106 return "[" . join(',',
map({ "@$_" }
107 @{$self->{cards}})) .
"]";
108 }
109 #############################
110 sub count_as_string {
111 #############################
112 my($self) = @_;
113 return $self->busted() ?
114 "Busted" : $self-
>blackjack() ?
115 "Blackjack" : $self-
>count("soft");
116 }
117 #############################
118 sub busted {
119 #############################
120 my($self) = @_;

121 return ! defined $self-
>count();
122 }
123 #############################
124 sub score {
125 #############################
126 my($self, $dealer) = @_;
127 return -1 if $self-
>busted();
128 return 1 if $dealer-
>busted();
129 return 0 if $self-
>blackjack() and
130 $dealer->blackjack();
131 return 1.5 if $self-
>blackjack();
132 return -1 if $dealer-
>blackjack();
133 return $self->count("soft")
<=>
134 $dealer->count("soft");
135 }
136 1;

Listing 2: Blackjack.pm

64 January 2004 www.linux-magazine.com

Perl: Black JackPROGRAMMING

that map to individual cards:: Heart A,
Heart 2, … Club Q, Club K. The list that
this creates is replicated by the x opera-
tor to reflect the number of card games
to be placed in the shoe (line 29).

The Algorithm::Numerical::Shuffle
module finally exports the shuffle
method. This shuffles the elements of an
array passed to it, using the Fisher-Yates
method. The reshuffle() method of the
Blackjack::Shoe object places the number
of 52 card decks defined in the instance
variable nof_decks into the card holding
shoe.

remaining() returns the number of
cards left in the shoe; this allows the
dealer to check that the game can be
completed with the remaining decks.
draw_card() draws a card from the shoe
and returns it as a reference to an array,
whose first element is the suit (Heart,
Diamond, Spade, Club) and whose sec-
ond element is the face value (A, 2, 3,
…, J, Q, K).

The Blackjack::Hand class represents
the principle of a player holding a hand
of cards. It has to do with drawing cards
from the shoe and their values – it does
not matter whether the hand belongs to
the player or the dealer. The constructor

Blackjack::Hand->new(shoe => U

$shoe)

links the player/dealer to the card shoe
from which the new cards will be drawn.
The draw() method adds one card to a
hand.

Using Superpositions to
Count the Score
The count() method in line 64 ff. counts
the score for a hand, and returns the
result either as a superposition, a hard
count ($hand->count(“hard”)), or a soft
count $hand->count(“soft”).

To allow this, the for loop in line 68 ff.
iterates through the cards, checking the
individual values and adding them. The
$count variable stores the superposition
of potential hand scores. It makes use of
the fact that Quantum::Superpositions
overloads the + operator, so that
$counts += 10 will add 10 to all super-
positions in $counts. When an Ace is
drawn, the number of superpositions is
doubled with 1 being added to half of
them, and 11 to the other half.

$counts = any($counts+1, U

$counts+11);

Line 79 immediately removes any scores
above 21 from the superpositions. If a
superposition no longer contains a value
after this operation, that is
ownstates($counts) returns an empty
list, the player has obviously exceeded
the maximum score of 21 and the hand is
busted. The count() method in line 83 ff.
discovers the hard and soft counts, using
the tricks discussed previously to find
the minimum and maximum values. The
int() function then strips the superposi-
tion of its special traits and makes it
scalar.

Blackjack Wins
If a player’s hand contains exactly one
Ace and one 10 point card, this con-
stitutes a Blackjack, and trumps any
other hands with 21 points. The black-
jack() method defined in line 94 ff.
checks for this situation by checking
whether the value of the hand corre-
sponds to a superposition with the
values 11 and 21 and if the hand contains
exactly two cards.

The score() method ascertains whether
a hand has won or lost against the
dealer’s Blackjack::Hand object, which it
accepts as a parameter. If the result is
negative, the player loses. If it
is positive, the player wins. And now let’s
look at a few special cases: The player’s
Blackjack pays 1:1.5, while the dealer
only gets straight odds for the player’s
bet. If the player has more than 21, the
hand is busted, and the player loses, even
if the dealer also exceeds 21 later.

Text Color and Keyboard Hits
The blackjack listing contains a script
that allows you to play a computerized
dealer at Blackjack, just like in Las
Vegas. It uses the classes defined in
Blackjack.pm for the dealer’s card shoe,
and the player’s and dealer’s hands.
Text::ANSIColor is used to provide some
colored output; the module exports con-
stants, such as BOLD, RED, BLUE or
RESET, which are tagged onto terminal
escape sequences, based on the constant
values passed to it as :constants. This
allows for bold or colored output, or will
return output back to normal display
mode.

Text::ReadKey in Raw Mode (initiated
by ReadMode 4), allows you to capture
values for key-presses, without the user
having to hit the Enter key. Toggling to
ReadMode 0 then returns the terminal to
Cooked Mode, where input must consist
of whole lines, if the user hits Enter and
none of the keys pressed so far have pro-
voked a reaction from the program.

When it is the users turn, the follow-
ing output is shown on screen:

[H]it/[S]tand/[Q]uit

The player can opt to Hit (draw another
card), Stand (not draw any more cards),
and Quit (the game), by pressing the H,
S or Q keys.

Figure 1 shows a typical game. The
dealer starts the game by drawing two
cards, although only one card will be
shown face up. The player is then dealt
two cards and can ask for another card,
to add points to her hand. If the player
opts to stand, the computerized dealer
will then follow a strict pattern for its
own hand. If the total soft count is less
than 17, the dealer draws a new card. 17
or more causes the dealer to stand, this
is not influenced by the player’s hand,
and then the dealer has to either pay out
or collect.

Feel free to use Blackjack.pm. You
might like to add a GUI, or a write a
TCP/IP server to play Blackjack across
the network. Have fun, and as they say
in Las Vegas, “Good Luck!” ■

[1] Listing for this article:
ftp://www.linux-magazin.de/pub/
listings/magazin/2003/12/Perl

[2] Avery Cardoza,“Winning Casino Play”,
Cardoza Publishing, 3rd Ed., 2003,
1-58042-090-7

[3] Illustration of Schrödingers experiment
with his cat: http://mist.npl.washington.
edu/npl/int_rep/tiqm/TI_fig_09.html

INFO

Michael Schilli works
as a Web engineer for
AOL/Netscape in
Mountain View, Cali-
fornia. He wrote “Perl
Power”for Addison-
Wesley and can be
contacted at
mschilli@perlmeister.com. His home-
page is at http://perlmeister.com.

T
H

E
 A

U
T

H
O

R

