
The indexing tool used is called
swish-e, a successor to the original Swish
search engine that was enhanced at
Berkeley and released under the GPL.
The original Swish tool was written way
back in 1994 by Kevin Hughes. swish-e
comprises an executable file called
swish-e and a library with the Perl inter-
face SWISH::API.

As explained at [3], you normally call
swish-e from the command line to create
an index that can be used for later full
text searches:

swish-e -c mytree.conf

where mytree.conf is a configuration
file with something like the following
content:

mytree.conf
IndexDir /documents/tree
IndexFile /path/mytree.index
UseStemming Yes

IndexDir sets the path to the root of the
document tree to be indexed, IndexFile is
the index file that swish-e creates (in fact
this creates two files to be more precise,
mytree.index and mytree.index-prop).

The UseStemming option tells swish-e
to reduce the keywords to their stem
form before adding them to the index,

thus converting
“floating” to
“float”, for exam-
ple. A query for
floater would also
be reduced to
float, and would
find documents
containing words
like floating. Cur-

rently, this kind of function will only
work reliably on English language docu-
ments. Instead of the path for the index,
IndexDir will also accept an executable
program or script:

mytree.conf
IndexDir some_script
IndexFile /path/mytree.index
UseStemming Yes

If you call the indexer as follows:

swish-e -c mytree.conf -S prog

it will run some_script which is expected
to split out all files to be indexed in this
format:

Path-Name: file_name
Document-Type: TXT*
Content-Length: 12345

Text ...

Valid document types are: TXT* (Text),
HTML*, and XML*. Content-Length spe-
cifies the length of the text following
after two carriage returns.

The perldig Perl script kills three birds
with one stone: If you specify the -u (for
“update”) option, it creates a configura-
tion file and sets the full path to the
script itself as the IndexDir.

If you call the script without any
options or arguments, it roots through
all the directory trees containing core or
module documentation in the current
Perl installation, removes any POD
markup, and sends the cleartext results
and Swish headers to STDOUT.

If you specify one or multiple argu-
ments, the script will assume that these

Now which Perl FAQ was it that
explained why floating point
operations sometimes produce

horribly inaccurate results? perldoc -q
floating will not be any help here as the
question in the FAQs was

Why am I getting long U

decimals (eg, 19.949999999999) U

instead of the numbers I shouldU
be getting (eg, 19.95)?

and it does not really contain any of the
keywords you might expect. The perldig
script that we will be looking at in this
article makes things easier, as it churns
its way through the manpages of your
Perl distribution, including any addi-
tional modules you may have installed,
and defines an index to facilitate com-
mand-line based full text searches that
can handle things like

perldig floating-point AND U

approximate AND real number

This search will return a numerical
menu of all documents containing
a combination of the above keywords
(see Figure 1). After you make a
selection, the less pager is launched
to continue the search within that
selection.

A Perl installation featuring the latest CPAN modules can easily have a few

thousand manual pages. High time to define an index to support full text

searching to aid our quest in finding precious knowledge.

BY MICHAEL SCHILLI

Indexing and full text searching documentation

Perl Diving

70 November 2003 www.linux-magazine.com

Perl: Indexing DocumentsPROGRAMMING

Figure 1: Old fashioned but practical: A simple numerical menu allows you to
select documents that match your search

arguments are search keys and launch a
swish-e search operation to return a list
of matching documents.

The Digger
The first module that perldig (see Listing
1) needs is the core module Config.pm,
which uses the installsitearch, install-
sitelib, installarchlib and installprivlib

$Config hash entries to return the paths
to the modules installed in the current
Perl installation.

The arch elements return processor
dependent paths, site points to the
site_perl branch, and installprivlib is
usually something like /usr/lib/perl5/
5.8.0. The order of these entries is signif-
icant, as perldig will later try them in

succession to compose the absolute
module paths from relative ones. The
longest path should come first, so a sim-
ple string substitution used later will
work efficiently.

The getopts() function, which is
exported from Getopt::Std, parses com-
mand line options. The only option
it accepts is -u. The If clause starting at

71www.linux-magazine.com November 2003

PROGRAMMINGPerl: Indexing Documents

001 #!/usr/bin/perl
002 #############################
003 # perldig
004 # Mike Schilli, 2003
005 ##########################’##
006 use warnings;
007 use strict;
008
009 use Config;
010 use SWISH::API;
011 use Shell::POSIX::Select;
012 use File::Basename;
013 use Getopt::Std;
014 use File::Path;
015 use File::Find::Rule;
016 use Pod::Simple::TextContent;
017
018 our $LESS = "less";
019 our $SWISH = "swish-e";
020
021 our $IDX_FILE =
022 glob

"~/.perldig/perldig.index";
023 our $CNF_FILE =
024 glob

"~/.perldig/perldig.conf";
025
026 our @DIRS =

($Config{installsitearch},
027 $Config{installsitelib},
028 $Config{installarchlib},
029 $Config{installprivlib},
030);
031
032 getopts("u", \my %opts);
033
034 if($opts{u}) {
035 update_index();
036 } elsif(@ARGV) {
037 search(@ARGV);
038 } else {
039 stream_files();
040 }
041
042 #############################
043 sub search {

044 #############################
045 my $term = join " ", @_;
046
047 my $swish = SWISH::API->

new($IDX_FILE);
048
049 $swish->AbortLastError
050 if $swish->Error;
051
052 my $results = $swish->Query(
053 join ' ', @ARGV);
054
055 $swish->AbortLastError
056 if $swish->Error;
057
058 my $hits = $results->Hits;
059 if (!$hits) {
060 print "No Results\n";
061 return;
062 }
063
064 my @results = ();
065 my @select = ();
066 my %map = ();
067
068 while (my $r = $results

->NextResult) {
069 push @results, $r;
070 my $path = my $org_path =
071 $r->Property(

"swishdocpath");
072 $path =~ s|^$_/|| for @DIRS;
073 push @select, $path;
074 $map{$path} = $org_path;
075 }
076
077 our($Eof, $Reply);
078
079 select my $file (@select) {
080 system "$LESS $map{$file}";
081 last;
082 }
083 }
084
085 #############################
086 sub stream_files {

087 #############################
088 my $rule = File::Find::Rule
089 ->file()
090 ->name('*.pod', '*.pm')
091 ->start(@DIRS);
092
093 while(my $file = $rule-

>match()) {
094 print STDERR "Processing

$file\n";
095 my $parser =
096 Pod::Simple::TextContent-

>new();
097 my $output = "";
098 $parser-

>output_string(\$output);
099 $parser->parse_file($file);
100 my $size = length($output);
101
102 print "Path-Name: $file\n",
103 "Document-Type: TXT*\n",
104 "Content-Length:

$size\n\n";
105 print $output;
106 }
107 }
108
109 #############################
110 sub update_index {
111 #############################
112 if(! -e $CNF_FILE) {
113 print "Creating

$CNF_FILE\n";
114 mkpath(dirname($CNF_FILE));
115 open FILE, ">$CNF_FILE" or
116 die "Can't open $CNF_FILE

($!)";
117 print FILE "IndexDir

$0\n",
118 "IndexFile $IDX_FILE\n",
119 "UseStemming Yes\n";
120 close FILE;
121 }
122 system("$SWISH -c $CNF_FILE

-S prog");
123 }

Listing 1: perldig

loop, which would otherwise expect a
new numeric variable.

Streaming Files
The stream_files() function browses the
file tree, starting with the directories
specified in @DIRS.

The File::Find::Rule module, which
behaves a bit differently than the
ubiquitous File::Find, is used here.
Instead of a callback function it defines
a series of filters for the filesystem
entries it finds, and only allows entries
that match every filter to pass through.
The file() rule in line 89 restricts
the selection to files only (no directo-
ries or links). Line 90 drops anything
that does not end with .pod or .pm,
and line 91 tells the script to start
doing this in the directories defined in
@DIRS.

The while() loop starting in line 93
repeatedly calls the match() method of
the File::Find::Rule object, and thus iter-
ates over all module files found. As we
will be indexing only the text content
and not the POD markups, we also need
a Pod::Simple::TextContent parser. The
parser’s output_string() method defines
a string, which it uses to store its output.
parse_file() in line 99 launches the
parser, which then plows through the
current module file hit.

The print statement in line 102 out-
puts the header required by swish-e
for the ensuing document; the length
of the document in bytes is ascer-tained
in line 100 by a call to length().

Updating the Index
The update_index() function, defined in
line 110 and following, helpfully creates
a configuration file for swish-e if the file
does not exist. The system() call in line
122 then ensures that swish-e is
launched and creates a new index based
on the settings in the configuration file.

This can take a few minutes, depend-
ing on the number of documents that
need indexing, and this is why the name
of document currently being processed is
output to STDERR in line 94.

If you run perldig -u as a cronjob, you
will want to send this output straight to
the trashcan, as follows:

0 4 * * * /path/perldig -u >U
/dev/null 2>&1

perldig can also search for combinations
of words linked by AND and OR, as in:

perldig local AND U

'"input record"'

If a query contains blank-separated word
combinations, don’t forget the double
quotes – if you want your input to go
to swish-e rather than falling victim
to the Shell. You also need to protect
parentheses:

perldig "(override OR overload)U
AND object-oriented"

returns all OO documents that contain
either the override or overload keywords.

Installation
The SWISH-E distribution is available as
a tarball from [2], and can be installed
using the usual steps:

./configure
make install

The tarball also contains the SWISH::API
Perl module. To install this just step
down to the perl subdirectory:

cd perl
perl Makefile.PL
make install

You may need to modify the configura-
tion variables in lines 18 through 24 of
perldig. After that you need to create an
index using perldig -u (u for update,
remember?) before you start searching:

perldig obfuscated

returned an astonishing number of nine
documents: Hidden pieces of Perl
humour! ■

line 34 triggers one of the three actions
described previously: Either updating the
index (update_index), or performing a
search (search), or parsing module files
and outputting them with headers
(stream_files).

glob “~/…” in lines 22 and 24 expands
to the current user’s home directory.

search() in line 43 first creates a new
SWISH::API class object; its method,
AbortLastError, terminates the program
execution and issues an error message if
the Error() method detects an error in
the previous action.

In line 52 the Query() method passes a
string containing a comma separated list
of keywords. Query() returns an object
as a result. Its Hits() method shows the
number of swish-e hits.

The while loop starting at line 68 uses
NextResult() to iterate through the
results, which are subdivided by so-
called properties. One of them, swish-
docpath, specifies the path to the file
matching the query.

Line 72 uses the following:

$path =~ s|^$_/|| for @DIRS;

to delete the absolute pathnames at the
start of each file path, ultimately leaving
something like Log/Log4perl.pm, al-
though the complete path may have
been something like:

/usr/lib/perl5/5.8.0/Log/U
Log4perl.pm

Perldig uses the %map hash to store the
associations between relative and
absolute pathnames, for quickly retriev-
ing a module file if the user selects it.

Line 79 contains a new construct
dragged into Perl by Tim Maher’s
Shell::POSIX::Select module, including all
the strings attached to it.

This is a port of the select Shell loop
that is probably known only to UNIX vet-
erans and which would otherwise wait
for the user selecting a new item by
number. The our statement squashed
into line 77 declares a few variables
thrown in by Shell::POSIX::Select, and
makes the whole thing presentable in
use strict mode.

The system() call in line 80 launches
the less pager and outputs the matching
file. last in line 81 terminates the select

72 November 2003 www.linux-magazine.com

Perl: Indexing DocumentsPROGRAMMING

[1] Listings for this article:
ftp://www.linux-magazin.de/pub/
listings/magazin/2003/10/Perl

[2] Swish search engine Homepage:
http://swish-e.org

[3] “How to Index Anything”, Josh Rabi-
nowitz, Linux-Journal 07/2003,
http://www.linuxjournal.com/article.
php?sid=6652

INFO

