
• That you could create, manage and
run playlists of music depending on
you current whims

• To be able to run a music server on
your private Ethernet to serve up
tracks to multiple servers/stereos all
over your home

• To categorize songs by their smooch
factor and choose a dozen or so to suit
the current mood.

Best thing of all, this is entirely legal.
Once you have become used to leaving
those silver disks in the cupboard, and
have come to appreciate the finer points
of those extended search and sort facili-
ties, you will hardly be able to imagine
the lengths you had to go to, to listen to
music way back in the Stone Age of CD
technology.

The Ripper is at it again
I used a Perl script called crip, which is
available for free at [1] to rip my CD col-
lection. Simply place a CD in the drive
and crip runs off to check for informa-
tion on the artist, album and tracks in
the CDDB database. This information is
then stored along with the tracks them-
selves in an MP3 file. I originally
intended to migrate to the Ogg Vorbis
format, which is the only one supported
by crip today (MP3 support is only avail-
able up to version 1.0), but I had to
change my plans, as my wife’s MP3

In the course of the last few months I
have been busy ripping all my CDs to
create MP3s, which are now stored

on an enormous (120 GBytes!) hard
disk. Having finished that step, I then
connected a lead up to my sound card,
plugged it into my stereo and happily
zapped around in a collection of thou-
sands of tracks using only a normal
household browser. I was amazed at the
tracks I had obviously bought at some
time, but completely forgotten! After the
dust, and the initial excitement, had set-
tled, I started working on some Perl
scripts to add some order to this chaos
and make my MP3 collection easier to
use.

Okay, I know it was a lot of work rip-
ping all those CDs, but for those of you
wary of all this effort, let me just ask if
you have ever wished for any of the fol-
lowing:
• That you could launch a track that has

been at the back of your mind within a
matter of seconds

• That your music collection could be
searched by keyword

The Apache::MP3 module builds a

convenient Web jukebox to organize

jumbled MP3 collections. You can

even use a Perl script to introduce

a simple hierarchy.

Rescuing your ever growing music

collection from the chaos of an

unordered world is a tedious task, but

one that can be accomplished.

BY MICHAEL SCHILLI

Easy-to-use Web Jukebox with Perl and Apache::MP3

Music on the Move

70 October 2003 www.linux-magazine.com

Perl & Apache::MP3PROGRAMMING

Figure 1: The jukebox offering to stream the
tracks on Green Day’s CD “Shenanigans”

visipix.com

player does not support the Ogg Vorbis
format. C’est la vie!

MP3 Partitions
To allow for more convenient partition-
ing of the enormous mass of data (25
GBytes), I decided to store the MP3 files
in so-called “pods”; these are subdirecto-
ries with three-digit serial numbers (001,
002, …) of 700 MB each.

Why did I choose that value? Well, 700
MB will easily fit on a CD-Rom, allowing
me to create back ups of all that hard
work. Let’s assume I want to back up
pod 027; I simply insert a writable disk
and type:

cdr 027

to start burning the CD. Of course cdr is
a simple one-liner shell script with the
following content:

mkisofs -R $* | cdrecord -v U

speed=4 dev=0,0 -

If you are not happy with that, refer to
[5] for a few useful tips on using typical
household CD writers on Linux.

A pod can store somewhere between
150 and 200 MP3 files, and I created 33
pod directories, numbered 001 through
033.

Pods can be stored on various
partitions on a single or multiple hard
disks, where symbolic links in a central
file structure are used to reference the
MP3 files themselves. This allows you to
create multiple views of your CD collec-
tion – sorted by album, artist, genre,
smooch factor, and so on, without need-
ing to copy the heavyweight MP3 files.
They simply stay in their pods.

A script aptly named topod picks up
the MP3 files from a temporary directory
that crip uses for ripping CDs, and stores
them in the next available pod. The
script uses the module Algorithm::Bucke-
tizer from CPAN to fill the “buckets” in
the pod chain up to the 700 MByte limit
and, if necessary, add a new bucket. It
also uses a %seen hash to locate dupli-

cates in the collection, and prevent new
duplicates from occurring. Line 18 in
topod initializes an Algorithm::Bucketizer
type object with a 700,000,000 Byte
bucket size. It uses the simple algorithm;
that is it simply fills the last bucket,
before starting on a new one. This
ensures that only the latest pod will be
subject to change, thus allowing you to
create CD ROM back ups of all the other
pods.

If the script notices that you already
have a few pods on your disk, it first has
to convert them to virtual buckets and
use the prefill_bucket method to pass
them to the Algorithm::Bucketizer object.

This setup allows the Algorithm::Buck-
etizer to use a while loop starting in line
38 with the add_item method to accept

71www.linux-magazine.com October 2003

PROGRAMMINGPerl & Apache::MP3

Figure 2: The Jukebox displaying my collection of
“Green Day” CDs

01 #!/usr/bin/perl
02 ##############################
03 # topod
04 # Mike Schilli, 2003

(m@perlmeister.com)
05 ##############################
06 use warnings;
07 use strict;
08
09 my $POD_DIR =

"/ms1/SONGS/pods";
10
11 use File::Basename;
12 use Algorithm::Bucketizer;
13 use File::Copy;
14
15 my %seen = ();
16
17 # Init buckets
18 my $b = Algorithm::Bucketizer-

>new(
19 bucketsize => 700_000_000,
20 algorithm => 'simple',
21);
22
23 # Prefill buckets with

existing Pods
24 while(<$POD_DIR/*>) {
25 my($idx) = /(\d{3})/;
26
27 while(<$POD_DIR/$idx/*.mp3>)

{
28 my $base = basename($_);
29 if(exists $seen{$base}) {
30 print "Dupe detected:

$_\n";
31 }
32 $seen{$base}++;
33 $b->prefill_bucket($idx - 1,
34 $_, -s $_);
35 }
36 }
37
38 while(<*.mp3>) {
39 if(exists $seen{$_}) {
40 print "Not adding dupe:

$_\n";
41 next;
42 }
43
44 $seen{$_}++;
45
46 my $bucket = $b->add_item

($_, -s $_);
47
48 my $path = sprintf

"$POD_DIR/%03d/$_",
49 $bucket->serial();
50
51 unless(-d dirname($path)) {
52 mkdir dirname($path) or
53 die "Cannot mkdir " .
54 dirname($path);
55 }
56
57 move($_, $path) or
58 die "Cannot move $_

to $path";
59 }

Listing 1: topod

Views
Who would want to root around the pod
jungle, just to find a track. Instead I
opted for a three-tier hierarchy with a
top directory of all artists, an album level
below this, and then the tracks on each
album in the right order.

Now crip has already ensured that
the individual MP3 files contain the tag
information I need for this task. And the
file names provide additional clues, as in:

The_Strokes_-_ITI02_The_ModernU
_Age.mp3

The artist (in this case The_Strokes)
comes first, followed by a dash and the
first letters of the words in the album
title (ITI = Is This It), followed by the

track number (02), and title (The_Mod-
ern_Age).

And this is how this song would be
stored in the by_artist hierarchy I opted
for:

by_artist
Strokes,_The
Is This_It
01
02_The_Modern_Age.mp3
03

To do this, the mktree listing iterates
through all the pods, using the MP3::Info
module to read the embedded info tags
of the MP3 files stored in the pods
to create the required subdirectory below
the by_artist tree (“Strokes,_The/Is_

new MP3s and store them in the latest
bucket, or create a new bucket. To reflect
this virtual order, the script creates new
subdirectories (line 52) and drops new
MP3 files into them (line 57) in the real
world. Algorithm::Bucketizer enumerates
the buckets starting at 0; the directories
in the real world are called 001, 002, and
so on. The add_item() method in line 46
expects the name and size of the MP3
file. The file test operator -s is used to
ascertain the size.

add_item returns the bucket object
that stored the MP3 file, and the serial()
method returns the index number of
the bucket (0, 1, 2, …). Adding one
and prepending one or two zeros (as in
007) will give you the matching pod
directory.

72 October 2003 www.linux-magazine.com

Perl & Apache::MP3PROGRAMMING

001 #!/usr/bin/perl
002 #############################
003 # mktree
004 # Mike Schilli, 2003

(m@perlmeister.com)
005 #############################
006 use warnings;
007 use strict;
008
009 my $POD_ROOT =

"/ms1/SONGS/pods";
010 my $TREE_ROOT =

"/ms1/SONGS/by_artist";
011 my $MP3_PATTERN = qr/\.mp3$/;
012 my %ARTIST_MAP = ();
013 my $ARTIST_FILE =

"artistmap.gdbm";
014
015 use Log::Log4perl qw(:easy);
016 use GDBM_File;
017 use File::Find;
018 use MP3::Info;
019 use File::Basename;
020 use File::Path;
021 use File::Spec;
022 use Getopt::Std;
023
024 Log::Log4perl->easy_init(
025 { level => $INFO,

layout => '%m%n'});
026
027 getopts("du", \my %opts);
028
029 tie %ARTIST_MAP, 'GDBM_File',

$ARTIST_FILE,
030 &GDBM_WRCREAT, 0640 or

031 die "Cannot tie
$ARTIST_FILE";

032
033 if($opts{d}) {
034 # Dump artist map
035 for(sort keys

%ARTIST_MAP) {
036 print "$_ =>

$ARTIST_MAP{$_}\n";
037 }
038 } elsif($opts{u}) {
039 # Undump artist map
040 %ARTIST_MAP = ();
041 while(<>) {
042 chomp;
043 my($k, $v) = split /

=> /, $_, 2;
044 $ARTIST_MAP{$k} = $v;
045 }
046 } else {
047 # Link hierarchy

entry to pod entry
048 find(sub {
049

mklink($File::Find::name)
050 if

/$MP3_PATTERN/;
051 }, $POD_ROOT);
052 }
053
054 #############################
055 sub mklink {
056 #############################
057 my($file) = @_;
058
059 my $tag =

get_mp3tag($file);
060
061 if(!$tag) {
062 warn "No TAG info in

$file";
063 link_path($file,
064 "Lost+Found/" .

basename($file));
065 return;
066 }
067
068 for(qw(ARTIST ALBUM TITLE

COMMENT)) {
069 unless($tag->{$_} =~

/\S/) {
070 warn "No $_ TAG

in $file";
071 link_path($file,
072

"Lost+Found/" .
073

basename($file));
074 return;
075 }
076 }
077
078 my ($track_no) =
079 ($tag->{COMMENT}

=~ /(\d+)$/);
080
081 $track_no = "XX" unless
082

defined $track_no;
083
084 my $artist = $tag-

>{ARTIST};

Listing 2: mktree

This_It”), and as the song “The Modern
Age” is stored in pod 017, to then create
the following symbolic link:

ln -s /.../pods/018/The_StrokesU
- ITI02_The_Modern_Age.mp3 U

by_artist/Strokes,_The/Is_ThisU
_It/02_The_Modern_Age.mp3

Of course, human error does tend to
raise its ugly head in the CD data avail-
able from the http://www.freedb.org
database: a simple typo, such as leaving
out the second “z” in “Eros Ramazzotti”,
will store your database entry in the
wrong spot. Or maybe somebody has
entered “Tom Waits”, where “Waits,
Tom” would be preferable in an alpha-
betical list.

Brain Power to the Rescue
Now this is difficult to automate: What is
the difference between “John Cale”, who
we would preferably index under “Cale,
John” in our collection, and a famous
group such as “Judas Priest”, who we
would like to keep just like that?

Use your brain! mktree makes a
few useful suggestions for each new
artist and leaves it up to the user to
decide:

[1] Judas Priest
[2] Priest, Judas
[1]>

You can simply hit “Enter” to accept the
first option; if you type a number, mktree
selects the entry with this number. If

none of the current suggestions makes
sense, mktree even allows text input at
this point, storing your selection persis-
tently until called in a GDBM database.

Starting in line 9 mktree first defines a
number of installation specific parame-
ters: $POD_ROOT is the root for the pod
directories where your MP3 files will be
stored, $TREE_ROOT specifies the direc-
tory in which artists, albums and tracks
will be stored. The persistent %ARTIST_
MAP hash specifies how to correct an
artist’s name after reading it from the MP
3 file.

Line 16 calls the GDBM_File module,
which is used by the tie() command in
line 29 to store the %ARTIST_MAP hash
persistently. Line 24 initializes Log::Log4
perl; I kept this in for old times’ sake, but

73www.linux-magazine.com October 2003

PROGRAMMINGPerl & Apache::MP3

085
086 unless(exists

$ARTIST_MAP{$artist}) {
087 $ARTIST_MAP{$artist}

=
088

warp_artist($artist);
089 }
090
091 $artist =

$ARTIST_MAP{$artist};
092
093 my $relpath = File::Spec-

>catfile(
094 map { s/[\s\/]/_/g;

$_;
095 } $artist, $tag-

>{ALBUM},
096 "${track_no}_$tag-

>{TITLE}.mp3");
097
098 link_path($file,

$relpath);
099 }
100
101 #############################
102 sub link_path {
103 #############################
104 my($file, $relpath) = @_;
105
106 my $path = File::Spec-

>rel2abs(
107

$relpath, $TREE_ROOT);
108
109 my $dir = dirname($path);

110 unless(-d dirname($path))
{

111 INFO("mkdir $dir");
112 mkpath $dir or
113 die "Cannot

mkpath $dir";
114 }
115 unless(-l $path) {
116 INFO("Linking $file

to $path");
117 symlink($file, $path)

or
118 die "Cannot

symlink $file";
119 }
120 }
121
122 #############################
123 sub warp_artist {
124 #############################
125 my($artist) = @_;
126
127 my @choices = ();
128
129 my @c = split ' ',

$artist;
130
131 if(@c == 1) {
132 @choices = ();
133 } elsif($c[0] =~

/^the$/i) {
134 my $the = shift @c;
135 @choices = ("@c,

$the");
136 } elsif(@c == 2) {
137 @choices = ("$c[1],

$c[0]");
138 } elsif(@c == 3) {
139 @choices = ("$c[2],

$c[0] $c[1]");
140 }
141
142 return pick($artist,

@choices);
143 }
144
145 #############################
146 sub pick {
147 #############################
148 my(@options) = @_;
149
150 my $counter = 1;
151
152 for(@options) {
153 print "[",

$counter++, "] $_\n";
154 }
155
156 $| = 1;
157 print "[1]>";
158
159 chomp(my $input =

<STDIN>);
160 $input = 1 unless $input;
161
162 if($input =~ /^\d+$/) {
163 return

$options[$input-1];
164 } else {
165 return $input;
166 }
167 }

Listing 2: mktree

something along the lines of “track11”.
Space characters and illegal slashes are
replaced by simple underscores using the
map command in line 94.

As s/[\s\/]/_/g; does not return the
resulting string, but the number of
replacements, you need to add $_; to
allow the map command to pass the
individual components to catfile. This
function, which is part of the File::Spec
collection, concatenates the elements to
finally create a pathname.

Starting at line 123, warp_artist()
attempts to put forward more-or-less
intelligent suggestions based on an
artist’s name passed to it. If you pass
“The Red Hot Chili Peppers” to the func-
tion it will generate both “Red Hot Chili
Peppers, The” and “The Red Hot Chili
Peppers”, and allow you to choose
between these two. When confronted
with “Rory Galagher”, it will suggest
both “Rory Galagher” and “Galagher,
Rory”.

Finally (as of line 146), pick expects
a list of suggestions, offering the user
an enumerated list of strings, and re-
turning the string that matches the
number selected by the user, if any.
On the other hand, if the user enters
a text string, pick will pick it up
(sorry about the pun) and hand it back
to the caller.

Installation
After customizing the configuration lines
to reflect your local environment, simply
launch topod and mktree from the
command line. topod will locate ripped
MP3 files in the current working direc-
tory, mktree can run anywhere. After
setting up the by_artist tree, we simply
have to set up an Apache Webserver to
serve it up.

You will need a mod_perl capable
Apache version (see the Howto at [3]).
Your local Perl installation also needs
the Apache::MP3 module by CPAN.
My installation worked with Apache
1.3.37 – but mod_perl should now run
reliably on 2.0. The following lines in
httpd.conf should enable your music
server:

<Location /songs>
SetHandler perl-script
PerlHandler Apache::MP3::Sorted
PerlSetVar SortFields Artist,U

Album,comment
</Location>

The /songs directory below the docu-
ment root, htdocs, of the Apache server,
must point to (or at least use a symbolic
link to) the by_artist directory, created
by mktree earlier on. The configuration
file will need a few lines, such as the fol-
lowing, to allow Apache to follow the
link:

<Directory />
Options FollowSymLinks
AllowOverride None

</Directory>

If you then restart and point your
browser to:

http://localhost/songs

you can browse around your collection
to your heart’s delight. Clicking on a
“stream” link for a song will launch the
Linux MP3 player, xmms ([4]), and play
one or more songs in sequence or
random order, as specified. And this is
just the start of a beautiful new relation-
ship. ■

it does allow you to make mktree more
or less talkative. %m%n simply outputs
the log message an a newline character.

Thanks to line 27, mktree also
understands the -d (Dump) and -u
(Undump) options, which output or set
the contents of the persistent
%ARTIST_MAP hash.

mktree -d > data

creates the artist list in the data file, as
in:

The Beatles => Beatles, The
Salt 'N' Pepa => Salt 'N' Pepa
Zucchero Sugar U

Fornaciari => Zucchero

If you use a text editor to manipulate
data manually, you can type:

mktree -u < data

to load the whole kit and caboodle back
into the binary GDBM file, and mktree
will automagically repair itself, the next
time you call it. This is very practical if I
mistype an entry when prompted by
mktree.

Extracting MP3 Tags
The MP3::Info module helps to read the
tag information stored in the MP3 files.
The get_mp3tag() function exported by
the module, expects an MP3 filename
and returns a reference to a hash con-
taining the CD data entries for all of the
ARTIST, ALBUM, TITLE and COMMENT
keys.

The mklink() function (its definition
starts in line 55 of mktree) expects the
complete path for an MP3 file in a pod,
using MP3::Info to extract the corre-
sponding CD data and ascertain the
album title and the normalized artist
name – this can involve some user inter-
action.

link_path() then uses symlink to cre-
ate a symbolic link in by_artist/interpret/
album/song.mp3 that points at the actual
MP3 file in the pod.

In the case of confusing or missing
MP3 tag data, a link is created in the
Lost+Found directory.

The script uses a regular expression
to extract the track number from the
MP3 COMMENT field, which contains

74 October 2003 www.linux-magazine.com

Perl & Apache::MP3PROGRAMMING

[1] Crip Homepage:
http://bach.dynet.com/crip/

[2] Apache::MP3:
http://namp.sourceforge.net

[3] Apache mod_perl homepage:
http://perl.apache.org

[4] xmms on Redhat 8.0/9.0 no longer plays
MP3s, a fix is available from:
http://www.gurulabs.com/downloads.
html

[5] Steve Litt,“Installing Your ATAPI CDRW
Drive in Linux”: http://www.
troubleshooters.com/linux/cdrw.htm

INFO

Michael Schilli works
as a software
engineer for
AOL/Netscape in
Mountain View,
California. He wrote
“Perl Power”for
Addison-Wesley and can be contacted
at mschilli@perlmeister.com. His
homepage is at http://perlmeister.
com.

T
H

E
 A

U
T

H
O

R

