
egardless of whether you use

Gnome or KDE, every desktop

offers panels. They dock at the

bottom or top of your screen, giving a

home to menus and icons for launching

programs, showing active applications in

taskbars, or helping you switch between

virtual desktops. The aim of the Perl-

Panel project is to use Perl to provide a

platform-independent panel. At the same

time, PerlPanel aims to let users add

their own applets, simply by hashing up

a couple of scripts.

On Ubuntu, you can install PerlPanel

and the Perl modules on which it de-

pends by typing sudo apt-get install perl-

panel at the command line. To take it for

a trial run, type /usr/bin/perlpanel. Fig-

ure 1 shows the panel GUI at the bottom

of the desktop.

If the space at the bottom of the screen

is already occupied by another panel,

you can move it to the right or left bor-

der, or just ditch it if you feel brave

enough to burn some bridges behind

you.

If you would like to keep track of share

prices, a standard application might not

be the best option for you as share price

ticker windows tend to hide other appli-

cations. Instead, a panel applet might be

the ideal choice for the budding investor

as it lets you keep a constant eye on the

latest share price developments, no mat-

ter which application you are currently

working with. To allow this to happen,

the applet checks the share prices you

are interested in by querying Yahoo Fi-

One panel has a neat collection of applets and another has spectacular looks – but a combination of the two is

rare. Now help draws nigh for the desktop: PerlPanel is extensible with do-it-yourself widgets.

BY MICHAEL SCHILLI

01 #!/usr/local/bin/perl -w

02 use strict;

03 use Finance::YahooQuote;

04

 05 $Finance::YahooQuote::TIMEOUT

06 = 60;

07

 08 exit 0 unless @ARGV;

09

 10 my @quotes = getcustomquote(

11 [@ARGV],

12 [

13 "Symbol",

14 "Last Trade (Price Only)"

15]

16);

17

 18 if (!exists $quotes[0][1]) {

19 die

20 "Fetching quote failed\n";

21 }

22

 23 for my $quote (@quotes) {

24 print "@$quote\n";

25 }

Listing 1: getquote

Perl: PerlPanel

72 ISSUE 101 APRIL 2009

072-076_perl.indd 72 11.02.2009 16:15:31 Uhr

nance every 5 minutes and displays the results on screen (the

ticker symbols to watch are stored in a local configuration

file, ~/.ticker-rc, in your home directory). The applet ignores

comment and empty lines in the configuration file and ex-

pects a ticker symbol in every line. Figure 1 shows the applet

display for selected prices in the panel on the desktop.

The getquote script in Listing 1 queries the Yahoo server to

reel in share prices; it expects a list of share symbols on the

command line, and outputs the latest share prices line by

line. The applet code proper is shown in Listing 2, Ticker.pm.

The applet simply parses the configuration file, calls the get-

quote script at five minute intervals, and refreshes the display

in the PerlPanel with the returned values. If an impatient user

clicks the applet instead, it assumes they can't wait until the

next update; in this case, the applet rushes off to ask the

Yahoo server and updates the panel display straight away.

The share symbols passed in to getquote at the command

line are stored in the @ARGV array in typical Perl style. The

getcustomquote function in the Finance::YahooQuote module

retrieves the share prices from the Yahoo server, specifying

that it is only interested in the fields Symbol (the share name

symbol specified at the command line), and Last Trade (Price

Only). Without this restriction, Yahoo would return a whole

bunch of data the applet doesn't need at every getquote call,

so it's better to say up front what you need and what you

don't.

If a transmission error occurs, a single value with an error

message is returned; if the query is successful, Yahoo returns

an array whose entries are pointers to arrays with the symbol

and last trade values. Line 18 checks if the returned results

really are two-column entries and bails out immediately if

not. Line 5 sets a timeout of 60 seconds; if a network error

occurs, this will prevent the script from waiting for ever.

Share prices that reach the script are sent to its standard out-

put by the for loop in Line 23. and formatted as Symbol Last-

Trade on every line of output.

Listing 2 Ticker.pm contains the applet code and has to fol-

low the PerlPanel's rules. This includes a module in the

PerlPanel::Applet::Name name space, a new() constructor,

and an initial configure() function, which the panel runs first.

The expand() and fill() functions stipulate how the widget

changes if more space becomes available in the panel. wid-

get() must return a pointer to the topmost Gtk widget in the

applet, and get_default_config() normally returns a structure

that configures the applet. However, as the configuration is

stored in an external file in our case, to avoid any changes by

the user requiring a restart of the applet, the function only re-

turns undef here.

Enough said about the PerlPanel API – what we need now

is the application code. The applet uses configure() to build

072-076_perl.indd 73 11.02.2009 16:15:35 Uhr

its GUI, which comprises a label with

share price data and a button that han-

dles user clicks. Line 42 defines this

using the widget's signal_connect()

method, which assigns an anonymous

subroutine to the clicked event; the sub-

routine calls the applet's stocks_update()

method. After all the widgets have been

defined, show_all() draws them in the

panel. Line 56 calls stocks_update() for

the first time before the program uses

add_timeout() to define an event that re-

occurs every five minutes (5 * 60 * 1000

milliseconds), which also calls stocks_

update(). The function in turn calls sym-

bols() to parse the ~/.ticker-rc file, thus

immediately catching short-term symbol

updates by the user.

Comment lines, blanks and anything

that does not look like a ticker symbol is

simply ditched by the function; later on,

Perl: PerlPanel

74 ISSUE 101 APRIL 2009

001 package

002 PerlPanel::Applet::Ticker;

003 use strict;

004 use Log::Log4perl qw(:easy);

005

 006 my $REFRESH = 5 * 30_000;

007 my ($CFG_FILE) =

008 glob "~/.ticker-rc";

009 my $GETQUOTE =

010 "/usr/bin/getquote";

011

 012 Log::Log4perl->easy_init(

013 {

014 level => $DEBUG,

015 file =>

016 ">>/tmp/ticker.log",

017 }

018);

019

 020 #############################

021 sub new {

022 #############################

023 my ($package) = @_;

024

 025 my $self = {};

026 bless($self, $package);

027 return $self;

028 }

029

 030 #############################

031 sub configure {

032 #############################

033 my ($self) = @_;

034

 035 $self->{label} =

036 Gtk2::Label->new(

037 "Ticker");

038

 039 $self->{widget} =

040 Gtk2::Button->new();

041 $self->{widget}

042 ->signal_connect(

043 'clicked',

044 sub {

045 $self->stocks_update();

046 }

047);

048

 049 $self->{widget}

050 ->set_relief('none');

051 $self->{widget}

052 ->add($self->{label});

053

 054 $self->{widget}->show_all;

055

 056 $self->stocks_update();

057

 058 PerlPanel::add_timeout(

059 5 * 60_000,

060 sub {

061 $self->stocks_update();

062 return 1;

063 }

064);

065

 066 return 1;

067 }

068

 069 #############################

070 sub symbols {

071 #############################

072 my @symbols = ();

073

 074 if (

075 !open(FILE, "<$CFG_FILE"))

076 {

077 ERROR

078 "Cannot open $CFG_FILE";

079 return ();

080 }

081

 082 while (<FILE>) {

083 s/#.*//g;

084 s/[^\w\.]//g;

085 next if /^\s*$/;

086 chomp;

087 push @symbols, $_;

088 }

089

 090 return @symbols;

091 }

092

 093 #############################

094 sub stocks_update {

095 #############################

096 my ($self) = @_;

097

 098 my ($tag, $buffer);

099 my $symbols = join " ",

100 symbols();

101

 102 DEBUG "Updating '$symbols'";

103

 104 if ($symbols eq "") {

105 $self->{label}->set_markup(

106 "No symbols defined");

107 return undef;

108 }

109

 110 if (!open(COMMAND,

111 "$GETQUOTE $symbols |"

112)) {

113 $self->{label}->set_markup(

114 "Fetch failed ($!)");

115 ERROR "Fetch failed ($!)";

116 return undef;

117 }

118

 119 $tag =

120 Gtk2::Helper->add_watch(

121 fileno(COMMAND),

122 'in', sub {

123 if (eof(COMMAND)) {

124 DEBUG

125 "Received data: $buffer";

126 close(COMMAND);

127 Gtk2::Helper

128 ->remove_watch($tag);

129 $buffer =~ s/\n/ /g;

130 $self->{label}

131 ->set_markup($buffer);

132 } else {

133 $buffer .= <COMMAND>;

134 }

135 }

136);

137

 138 return 1;

139 }

140

 141 #############################

142 sub expand { return 0; }

143 sub fill { return 0; }

144

 145 sub widget {

146 return $_[0]->{widget};

147 }

148

 149 sub get_default_config {

150 return undef;

151 }

152

 153 1;

Listing 2: Ticker.pm

072-076_perl.indd 74 11.02.2009 16:15:35 Uhr

Anzeige
wird
separat
angeliefert

072-076_perl.indd 75 11.02.2009 16:15:35 Uhr

these symbols will be sent to the get-

quotes script, and it's essential to avoid

unpleasant surprises with unchecked

command-line parameters.

When Perl's open() function is called by

stocks_update() in line 110, it creates a

pipe to allow getquote to run in the back-

ground. Be careful here: If the code were

to grab the output of the externally

called process right after, it might have

to wait a couple of seconds for the re-

sults to trickle in from the Internet,

which is not a good idea for a GUI that

must react swiftly to user input that can

happen at any time. Instead, stocks_up-

date() uses the Gtk2::Helper add_

watch() function, which accepts a file

descriptor (fileno() generates a descrip-

tor from a Perl file handle) and jumps to

a callback function when data arrives on

it. This means that the script keeps run-

ning in the meantime, terminating

stocks_update() and jumping to the ap-

plet's main event loop, where it can pro-

cess user input and other external events

without any delays.

If get_quote has finally sent some data,

but still has more to come, the call to

eof(COMMAND) is false and the Else

loop in Line 132 appends the data to the

existing results. When get_quote fin-

ishes, it's the IF branch's

turn; the file handle is

cleaned up by close(), and re-

move_watch() stops watching

the corresponding descriptor.

Line 129 then transforms the

column format to a single

Symbol Price Symbol Price ...

line and then calls the set_

markup() method to send it

to the label widget, which

displays the text in the panel.

To make sure that the developer

knows what the applet is up to, Ticker.

pm first initializes Log4perl to redirect

the log statements embedded in the code

to the /tmp/ticker.log file. Figure 2 shows

a couple of lines from the log. If you do

not need this additional output, simply

comment out the call to easy_init() in

the code.

On Ubuntu, you can type sudo apt-get

install perlpanel at the command line to

install PerlPanel along with the Perl

modules on which it depends. The files

are available from the Ubuntu Package

repository, so there is no need for a

CPAN Shell. The getquote script then

must be installed in /usr/bin and re-

quires the Finance::-YahooQuote mod-

ule, which is also available as a Ubuntu

package (libfinance-yahooquote-perl).

To tell PerlPanel about the new ticker

applet, you must copy the Ticker.pm file

to the /usr/share/perlpanel/PerlPanel di-

rectory, where you will find some other

applets that are installed as part of the

PerlPanel distribution. Then you need to

add the line

Ticker:Stock Ticker:Utilities

to the applet registry file, /usr/share/per-

lpanel/applet.registry. This specifies that

the panel will find the "Ticker" widget in

the applet directory under the name of

Ticker.pm, that it is a stock ticker, and

that it should be located in the Utiltities

section.

After it restarts, PerlPanel knows that

the applet exists, but still does not dis-

play it. To allow this to happen, the user

first has to add the applet to the panel.

To do so, you need to press the Actions

button in the panel, and select the Con-

figure menu item. In the dialog box that

follows, click the +Add button. This

gives you the selection box (Figure 3),

which shows a selection of

ready-to-run applets. One of

them is your ticker, which you

can then select and install by

pressing the +Install Applet

button. The applet then appears

in the container, where you can

move it up or down to change

its corresponding horizontal dis-

play position in the panel.

To launch the panel automati-

cally when you log in to a ses-

sion with your window man-

ager, you must add the

/usr/bin/perlpanel program to

your session start dialog; on

Gnome, this looks something

like the dialog box shown in Fig-

ure 4, which appears when you click

System | Preferences | Sessions in the

main menu.

For more information on building your

own Perl applets, you can read the perl-

panel-applet-howto.pod file, which is not

part of the Ubuntu package, but is avail-

able with the source code from the Perl-

Panel CVS repository [2].

All of the panel's functions, including

the desktop pager, the taskbar, and the

dialog boxes for adding new applets and

their configurations, were written in Perl

and give you a taste of what's possible

with PerlPanel. p

Perl: PerlPanel

76 ISSUE 101 APRIL 2009

[1] PerlPanel project: http:// savannah.

 nongnu. org/ projects/ perlpanel

[2] Listings for this article: http:// www.

 linux-magazine. com/ resources/

 article_code

INFO

072-076_perl.indd 76 11.02.2009 16:15:36 Uhr

