
ometimes I imagine how satisfy-

ing it would be to track down a

spammer or telemarketer’s office,

like the man in the Snickers commercial

[1] who arrives at the office and gets his

revenge. Unfortunately, legal and logisti-

cal reasons often prevent this. Addition-

ally, it is often the case that the perpetra-

tors are botnets rather than the spam-

mers themselves. Still, it would be inter-

esting to create a graph that pinpoints

the geographic regions in which most

spam activities originate.

The Internet is the ideal platform for

anonymous trickery, but the perpetra-

tor’s deeds actually leave a trail – each

incoming request on a website includes

the sender’s IP address (see Figure 1).

Of course, the address could be

spoofed, but this is not so simple and

just too much trouble for most link

spammers.

The DNS system, which resolves host-

names into IP addresses, can often do

the same thing in reverse gear. A DNS re-

verse lookup expects an IP address, and

if the spammer’s service provider has set

up everything as it should be, the script

in Listing 1, revlookup, will return a

hostname from which you usually can

identify the provider. Figure 2 shows that

the address I caught spamming, IP

69.162.110.146, belongs to an ISP called

lstn.net; a friendly email to the ISP’s

webmaster, stating the IP and the time

(which is important because these IPs

are often assigned dynamically) might

just be the ticket to stop the spammer’s

illegal activity for good.

The inet_aton() function in Perl’s

Socket module accepts an IP address in

string notation ("x.x.x.x") and returns a

data structure for a subsequent call to

Perl’s gethostbyaddr() function. When

called with the AF_INET parameter, as

shown in line 17 in revlookup, the func-

To identify the geographic regions from which link spam originated, a database locates IP addresses and the

Google Charts service puts them onto a world map. BY MICHAEL SCHILLI

Perl: Pinpointing Spammers

74 ISSUE 100 MARCH 2009

074-078_perl.indd 74 14.01.2009 18:15:56 Uhr

tion performs the DNS reverse lookup in the IPv4 address

space and, if successful, returns a string with the hostname or

returns undef if an error occurs. Depending on how busy the

DNS server you call on is at the time and how many of its

peers it needs to consult to answer your request, this process

can take a couple of seconds.

As another option, the whois command-line utility doesn’t

just work with domains, it also accepts IP addresses as argu-

ments. Figure 3 shows that the provider, Limestone Networks,

has registered everything correctly and even provides an

email address that spammed webmasters can contact with

their complaints. The lookup can be automated in Perl with

the CPAN Net::Whois::Raw module, for example; however, it

puts significant load on the servers hosted by Network Solu-

tions, who will block access if you perform 100 lookups in

quick succession. In other words, searching a complete access

log with this module is impossible, even if you cache queries

you have already made.

Many spammers use IP addresses without a reverse lookup

entry on the DNS system. But even then you can still locate

the culprit; IP addresses are assigned to service providers in

blocks, and you can download databases with the informa-

tion necessary to discover the approximate geographic posi-

tion of any given IP address. MaxMind offers a database file

[2] that is free for non-commercial use. The licensing condi-

tions are available in the same directory as the database itself.

The CPAN IP::Country::MaxMind module provides an API to

match, thus avoiding the need to mess around with data

blobs. The IP mappings stored in the database change very

slowly; updating once every couple of months should be fine.

After installing the module, you will need another CPAN

module, Geo::IP::PurePerl. The MaxMind module’s open()

constructor loads the local database that you specify, and the

inet_atocc() function returns a country code for any IP ad-

dress (for example, DE for Germany).

01 #!/usr/local/bin/perl -w

02 use strict;

03 use Socket;

04

 05 my $host = $ARGV[0]

06 or die "usage: $0 ipaddr";

07

 08 print reverse_lookup($host)

09 || "unknown", "\n";

10

 11 #############################

12 sub reverse_lookup {

13 #############################

14 my ($ip) = inet_aton $_[0];

15

 16 return (

17 gethostbyaddr(

18 $ip, AF_INET

19)

20)[0];

21 }

Listing 1: revlookup

074-078_perl.indd 75 14.01.2009 18:16:01 Uhr

The Google Charts API [3] gives you a

useful option for plotting these codes on

a world map. If you pass in pairs of val-

ues to the Google server, it will respond

with a PNG-formatted image file. The

data format for the pairs of values is

slightly unusual in that you need to

squash largish volumes of data into the

very restricted space offered by a URL

and its query parameters.

The API’s aptly named Simple Encoding

data format will only allow values be-

tween 0 and 61, encoded as A-Z (0-25),

a-z (26-51), and 0-9 (52-61).

If you assign a value of 23 to Germany,

3 to the USA, and 60 to Japan, you can

encode the country codes in the chld

URL parameter as "DEUSJP" (DE, US,

and JP, concatenated without blanks),

and the values as "s:XD8" (s = simple

encoding, X = 23, D = 3, and 8 = 60)

in chd.

The script in Listing 2, spam2geo, im-

plements the steps I have identified thus

far; it analyzes the access.log file from an

Apache server under heavy fire from link

spammers. The CPAN ApacheLog::Parser

module provides a parse_line_to_hash

function, which understands the access.

log format and returns the individual

fields of each log entry as a hash. The

client entry includes the spammer’s IP

address in each case, and a call to the

inet_atocc method in line 32 returns the

two-letter country code, assuming the

database knows it.

If successful, line 36 increments the

hash entry for the country, and the pro-

gram moves on to the next line in the

logfile. Because you are not interested in

all the URLs – just the ones generated by

spammers – line 28 filters out all entries

whose path (file hash key) does not

match the regular expression posting.

The regex should only match URLs used

by spammers to post on the forums you

are monitoring, so you must modify it to

match your local conditions.

001 #!/usr/local/bin/perl -w

002 use strict;

003 use LWP::UserAgent;

004 use URI::URL;

005 use List::Util qw(max min);

006

 007 use IP::Country::MaxMind;

008 use ApacheLog::Parser

009 qw(parse_line_to_hash);

010

 011 my $gi =

012 IP::Country::MaxMind->open(

013 "GeoIP.dat");

014

 015 my %by_country;

016

 017 open LOG, "<access.log"

018 or die

019 "Can't open access.log ($!)";

020

 021 while (<LOG>) {

022 chomp;

023 my %fields =

024 parse_line_to_hash $_;

025

 026 # only proceed if forum post

027 next

028 if $fields{file} !~

029 /posting/;

030

 031 my $country =

032 $gi->inet_atocc(

033 $fields{client});

034

 035 if (defined $country) {

036 $by_country{$country}++;

037 }

038 }

039

 040 close LOG;

041

 042 # Convert values to Google format

043 my @SYMBOLS = (

044 "A" .. "Z",

045 "a" .. "z",

046 0 .. 9

047);

048

 049 my $max =

050 max values %by_country;

051 my $min =

052 min values %by_country;

053

 054 for my $country (

055 keys %by_country)

056 {

057

 058 my $val =

059 $by_country{$country};

060 my $norm =

061 ($val - $min) / $max *

062 $#SYMBOLS;

063

 064 $by_country{$country} =

065 $norm;

066 }

067

 068 my $chld = join "",

069 keys %by_country;

070 my $data = join "",

071 values %by_country;

072

 073 # Fetch chart

074 my $ua =

075 LWP::UserAgent->new();

076

 077 my $uri =

078 URI::URL->new(

079 "http://chart.apis.google.com/chart"

080);

081

 082 $uri->query_form(

083 cht => "t",

084 chs => "440x220",

085 chtm => "world",

086 chd => "s:$data",

087

 088 # white, yellow, red

089 chco =>

090 "ffffff,f4ed28,f11414",

091 chld => $chld,

092

 093 # light blue

094 chf => "bg,s,EAF7FE"

095);

096

 097 my $resp = $ua->get($uri);

098

 099 # Print image on success

100 if ($resp->is_success()) {

101

 102 open FILE, ">file.png"

103 or die;

104 print FILE $resp->content();

105 close FILE;

106 system("eog file.png");

107 } else {

108

 109 die $resp->request->url()

110 . " failed\n";

111 }

Listing 2: spam2geo

Perl: Pinpointing Spammers

76 ISSUE 100 MARCH 2009

074-078_perl.indd 76 14.01.2009 18:16:02 Uhr

Anzeige
wird
separat
angeliefert

074-078_perl.indd 77 14.01.2009 18:16:02 Uhr

Normalization and con-

version of the data to the

Google format starts in

line 42. Because the nu-

meric values for each

country in the %by_coun-

try hash are not necessar-

ily in the range 0–61 but

can assume arbitrary val-

ues, spam2geo must de-

termine the limits of the

range by use of min and

max from List::Util. After

doing so, it subtracts

$min and divides by

$max to squash the nu-

meric values to be repre-

sented into the range be-

tween 0 and 1 and multi-

plies the latter value by

the number of encoding

characters minus 1. Thus,

$norm contains a floating

point number, which can be converted

to an integer and used as an index in the

@SYMBOLS array, thus mapping the

whole range of values to an element in

the array.

Lines 68 and 70 then concatenate the

calculated symbols to give strings with-

out separating blanks, for passing in

with the chld (country codes) and chd

(values) URL parameters. From the pro-

grammer’s point of view, the order in

which the keys and values functions re-

turn results is arbitrary, but consistent

within the Perl script, and irrelevant to

the Google service.

Communications with the Google

server are handled by LWP::UserAgent

via the http protocol. The URL parame-

ters are set by the query_form() method,

which also performs any URL encoding

required. The cht parameter specifies the

charts type used by the Google Charts

service and is set to "t" (topological) for

a world map. You can optionally restrict

the view to individual continents; how-

ever, you need to set the chtm parameter

to "world" for a world map.

The chs parameter sets the dimensions

of the resulting image to 440x220 pixels.

Google Charts uses the colors white, yel-

low, and red specified as hex RGB values

in chco to shade the countries, thus re-

flecting minimum, medium, and maxi-

mum values. So, the settings in Listing 2

leave countries with normalized spam

counts around 0 white, values of around

20 yellow, and values of 60 or more red.

The "bg,s,EAF7FE" string for the chf pa-

rameter stands for background, solid,

and the hex value for light blue to color

the world’s oceans.

All told, the URL will look something

like this: http://chart.apis.google.com/

chart?cht=t&chs=440x220&chtm=worl

d&chd=s%3ABFAABAHGQAAA8BAAA

AAAAaBAA&chco=ffffff%2Cf4ed28%2C

f11414&chld=GBNLHKEELVKRRUSAPA

MDCASECNDEPKITPLINMEBRCZUSUAE

SFR&chf=bg%2Cs%2CEAF7FE.

Google takes just a couple of seconds

to render and deliver this as the graph

shown in Figure 4. If you comment out

lines 27-29 in spam2geo, the graph will

give you a geographic distribution of all

incoming URLs instead (Figure 5).

Although most spam requests origi-

nate in China and the US, most of the

website’s bona fide customers come

from Germany. The eog file.png com-

mand displays the file produced by

Google and retrieved via a web request

in the Eye of Gnome utility.

After downloading the MaxMind GeoIP.

dat.gz database [2], unpack the GeoIP.

dat file and place the spam2geo script

into your current working directory. The

CPAN IP::Country::MaxMind,

Geo::IP::PurePerl, List::Util, and

ApacheLog::Parser modules and all their

dependencies are best installed from a

CPAN shell. To use the Google API, you

do not need to register. You just need to

modify line 28 in spam2geo to match

your local conditions by changing the

/posting/ pattern to match URLs used

only by spammers to clutter your discus-

sion groups with parasitic entries.

For more detailed analysis including,

for example, the number of forum re-

quests compared with other activities or

the preferred browser type used by the

spammers (at least what they say they’re

using), check out the enormous choice

provided by the Google Charts API [3],

which gives you an easy approach to

render any statistical information ele-

gantly in polished chart form. p

[1] Snickers Cruncher – Telemarketer:

http:// www. youtube. com/ watch?

 v=R6QATC2C0h8

[2] Free MaxMind GeoIP database

download: http:// www. maxmind.

 com/ download/ geoip/ database/

[3] “Maps” charts by the Google Charts

web service: http:// code. google.

 com/ apis/ chart/ types. html# maps

[4] Listings for this article:

http:// www. linux-magazine. com/

 resources/ article_code

INFO

Perl: Pinpointing Spammers

78 ISSUE 100 MARCH 2009

074-078_perl.indd 78 14.01.2009 18:16:03 Uhr

