
77

I was browsing a mail order catalog 
for electronics the other day when I 
noticed a couple of low-budget, digi-

tal multimeters with RS 232 interface. I 
discovered the MAS-345 model by Mas-
tech on eBay for US$ 35 and quickly 
pressed the “buy-it-now” button.

Windows? No Thanks!
When the device arrived, it came with 
just a Windows CD. After a quick search 
on the web, I discovered the Marsh proj-
ect [2], which uses a bit of C code to ad-
dress the Mastech MAS-345 among other 
multimeters. 

The serial line protocol used by the 
 device is fairly straightforward. After a 
couple of introductory signals to set up 
the line, the PC sends a newline charac-

ter to the measuring device. The device 
responds with a 14-byte string contain-
ing the value shown on the multimeter’s 
LCD display, and other useful informa-
tion like what’s being measured and the 
selected range.

If the string returned by the Mastech 
device is V -120.3 mV, this indicates that 
the multimeter is in voltage mode and 
showing a value of -120.3 millivolts. 

The multimeter takes about one sec-
ond to respond, so the computer can 

 retrieve a maximum of one measured 
value per second.

Listing 1 shows a test script that 
fetches a value from the multimeter. The 
CPAN Device::SerialPort module gives 
developers a convenient, object-oriented 
interface for talking to the computer’s 
serial port. The port will use the RS 232 
protocol to talk to the multimeter on the 
other end of the line.

mmread in Listing 1 sets up a connec-
tion with the computer’s first serial port, 

Today’s digital multimeters can do more than measure current and voltage. 

Multimeters also measure capacity and temperature. An inexpensive 

multimeter can talk to your PC via the serial port, and simple Perl scripts let 

you read and visualize data in neat charts. BY MICHAEL SCHILLI

Perl uses a multimeter to report power consumption

ELECTRICKERY

m
a
d
o
ch

a
b, p

h
oto

ca
se.co

m

PROGRAMMINGPerl: Multimeter to Measure Power Consumption

77ISSUE 83 OCTOBER 2007W W W. L I N U X- M A G A Z I N E . C O M

01  #!/usr/bin/perl -w

02  use strict;

03  use Device::SerialPort;

04

 05  my $serial = Device::
SerialPort->new(

06    "/dev/ttyS0");

07

 08  $serial->baudrate(600);

09  $serial->databits(7);

10  $serial->purge_all();

11  $serial->rts_active(0);

12  $serial->dtr_active(1);

13

 14   # Send request

15  $serial->write("\n");

16   # Wait one second

17  select(undef, undef, undef, 
1);

18

 19   # Read response

20  my($count, $data) = 
$serial->read(14);

21  print "$data\n";

Listing 1: mmread

Michael Schilli works 
as a Software Devel-
oper at Yahoo!, 
Sunnyvale, Cali for -
nia. He wrote “Perl 
Power” for Addison-
Wesley and can be 
 contacted at mschilli@ perlmeister. 
com. His homepage is at 
http://  perlmeister.  com.

T
H

E
 A

U
T

H
O

R



which has a device name of /dev/ttyS0 
on Linux. To enable the script to run on 
a normal user’s account, the root user 
will need to open the device file for 
global reading and writing by entering 
chmod a+rw /dev/ttyS0. If you have a 
new-fangled computer without a serial 
port, you will also need to invest about 
US$ 10 in a serial PCI card. Note that 
Linux might then show the serial ports 
under different names; typical examples 
are /dev/ttyS5 and /dev/ttyS6.

The test script first sets the baud rate 
to 600 and the number of data bits to 7. 
A call to the purge_all() method triggers 
the Unix tcflush(2) internally with the 
TCIOFLUSH flag set to delete any dan-
gling data bits. The RTS line is then 
cleared and the DTS line is set to initiate 
communications with the multimeter.

The write() method then sends a new-
line character to the multimeter, which 
responds after a short while with the 
data in its display. For reasons explained 
above, the script waits for a second be-
fore issuing a read() command to fetch 
more data from the serial port. You could 
use sleep(1) to do this, but select() sup-
ports fractions of seconds, and I tried 
various values while developing the 
script before deciding on one second as 
the most reliable approach.

We know that the multimeter will 
send exactly 14 characters, and read ex-
plicitly requests to retrieve that many. 
The result string ends up in $data, 
which the print command subsequently 
writes to STDOUT.

One for All
I bundled everything into a module and 
dropped it off at CPAN as Device::
MAS345, so other MAS345 enthusiasts 
can read their multimeters without con-
cerning themselves with the underlying 
technology. Another advantage that 
CPAN modules offer is that they are 
available wherever you are and are easy 
to find using search.cpan.org.

Device::MAS345 gives developers an 
object-oriented interface at a higher ab-
straction level. The mmloop script in 
Listing 2 shows how to fetch data from 
the multimeter using an infinite loop and 
how to store the acquired data along 
with the current time in a text file. The 
CPAN module picks up the raw string 
from the multimeter via the read 
method, and it splits the result into the 

measured numeric $value, the $unit, 
and the $mode. Before launching into 
the infinite loop, the script switches to 
autoflush mode by setting $|, making 
sure that subsequent print commands 
won’t hold back the output. tail -f moni-
tors the progress in the output file.

Caution, Voltage!
I’ve always wondered how much power 
my desktop computer, which runs 24x7, 
consumes in the course of the day. Does 
my computer save power when I’m not 
using it? A device like the Kill-A-Watt [3] 
can calculate the total consumption, but 
I’m interested in what the computer 
does in the middle of the night when no-
body’s looking. 

The MAS-345 measures current up to 
10 Amps and it also measures alternating 
current, which is a feature you can’t take 
for granted with low-budget multime-
ters. Moreover, as any electrical engineer 
can assure you, simply multiplying volt-
age and current doesn’t give you the ac-
tual power consumed, but I’ve verified 
with the Kill-a-Watt that it comes pretty 
close for both my PC and my Laptop.

Be careful when using your multime-
ter to measure the power coming out of 
the wall sockets. Mains power in the 
United States is just 110V, but that can 
be more than enough to cause serious 
injury. Uninsulated banana plugs like 
those used for low-voltage experiments 
aren’t appropriate here. 

A long time ago, one of my physics 
teachers paid a high price for being ab-
sent minded and ended up in a hospital 
after touching a banana plug carrying 

220V! Thankfully, new measuring cables 
for multimeters always use insulated ba-
nana plugs; I just bought myself a couple 
to connect to a multiple socket. Also, 
don’t try the soldering experiment men-
tioned below if you’re not feeling com-
fortable working with high voltage. This 
is for experts who know how to use 
proper safety precautions.

The amperemeter needs to be con-
nected in series with the consumer. Fig-
ure 1 shows the circuit diagram, and Fig-
ure 2 shows the physical wiring using a 
low-budget multiple socket. In ampere 
mode, the multimeter’s internal resis-
tance is almost zero and connecting it in 
parallel to the socket would be fatal. You 
could destroy your multimeter this way 
or, at best, blow fuses all over the house 
and in the multimeter (if it happens to 
have one).

The soldered joints in my multiple 
socket were tougher than expected. In 
fact, I had to buy a 60W soldering iron 
for the job because my other two solder-
ing irons were designed for use with 
smaller electronic devices.

After double-checking the modified 
hardware, I plugged in carefully and 
started measuring the power consump-
tion of the Linux-based home PC and a 
laptop with docking station in the Perl-
meister lab.

Visualization
Obviously you’re not going to thrill the 
crowds by generating a text file with 
rows of figures. To help visualize the 
data, the mm2rrd script in Listing 3 
parses the file line by line and separates 

Perl: Multimeter to Measure Power ConsumptionPROGRAMMING

78 ISSUE 83 OCTOBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

01  #!/usr/bin/perl

02  use strict;

03  use warnings;

04  use Device::MAS345;

05  use Log::Log4perl qw(:easy);

06  Log::Log4perl-> 
easy_init($DEBUG);

07

 08  my $mas = Device::MAS345->new(

09        port => "/dev/ttyS0");

10

 11  open FILE, ">>values.txt" or 
die;

12

 13   # Autoflush

14  select FILE;

15  $| = 1;

16

 17  while(1) {

18    my($val, $unit, $mode) = 
$mas->read();

19    die $mas->error() unless 
$mode;

20    print FILE time(), " ", 
"$val\n";

21    sleep 10;

22  }

Listing 2: mmloop



the timestamps from the acquired val-
ues. Then you can pass the results to 
rrdtool to create a neat graph with a min-
imum of effort.

We use the plough method from the 
CPAN Sysadm::Install module to read 
the data line by line. The method ex-
pects a subroutine reference and a file. 
The method opens the file, iterates over 
the lines and jumps to the function for 
each, and sets the $_ variable to the con-
tent of the current line. 

mm2rrd extracts the timestamp and 

the measured value and pushes both as 
array references to the end of the 
@points array.

rrdtool options are fairly cryptic, but 
the CPAN RRDTool::OO module gives de-

velopers an understandable interface by 
converting input into rrdtool commands. 
The create() command generates a 
round-robin database, mmdata.rrd, with 
10000 primary data points (PDPs), 

PROGRAMMINGPerl: Multimeter to Measure Power Consumption

79ISSUE 83 OCTOBER 2007W W W. L I N U X- M A G A Z I N E . C O M

Figure 1: Set up the multimeter to measure 

the current in a serial connection with the 

device.

Figure 2: A modified multiple socket with insulated banana plugs for connecting the digital 

amperemeter.

Advertisement



which it expects every 30 seconds (step 
value). The previous script outputs mea-
sured values at 10-second intervals, but 
rrdtool automatically calculates the 30-
second average to arrive at the PDPs.

rrdtool does not respond well to values 
outside the start point of the RRD data-
base, so the script sets the $start param-
eter for the create method to one second 
before the first measured value.

A similar approach is used to set the 

time scale for the graph, but in this case, 
$points[-1]->[0] sets the end point to 
the timestamp of the last data point in 
the @points array. The graph method 
generates a nice chart as a PNG file.

Results
Figure 3 shows the power consumption 
of the Linux PC at night. The machine 
did not sleep at all because I also used 
the system to run the measuring script. 

There is a noticeable increase in power 
consumption caused by the backup and 
indexing process kicking in at 2am. The 
three disks I installed in the machine 
were spinning up and pushed the power 
usage. The process terminated and 
power consumption dropped to the origi-
nal level just before 7am.

Figure 4 shows the power consump-
tion for my laptop, which is connected 
to a docking station, a couple of minutes 
before and after switching on. The dock-
ing station still consumes 40mA when it 
is switched off, which means I’m wast-
ing 4 watts day and night! 

The consumption values rocketed after 
switching on the docking station. That’s 
no surprise because the system has to 
ramp the disk up to speed and launch 
the operating system. 

After a couple of minutes, the value 
dropped to about 130mA. In other 
words, my laptop uses about 15 watts, 
which is just more than a tenth of what 
the PC uses. The multimeter will also 
measure temperature and capacity, and 
online nerd stores have all kinds of sen-
sors with voltage output, so creative tin-
kerers will have hours of fun discovering 
new applications.  ■

Perl: Multimeter to Measure Power ConsumptionPROGRAMMING

80 ISSUE 83 OCTOBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

Figure 3: The power consumption of a PC at night: A cron job starts a 

2am and completes at 7am.

Figure 4: Power consumption of a laptop shortly before and after 

switching on.

01  #!/usr/bin/perl -w

02  use strict;

03  use RRDTool::OO;

04  use Sysadm::Install qw(:all);

05

 06  my @points;

07

 08  plough sub {

09   chomp;

10   my($time, $value) =  
split / /, $_;

11   push @points, [$time, 
$value];

12  }, "values.txt";

13

 14   # Constructor

15  my $rrd = RRDTool::OO->new(

16         file => "mmdata.rrd" );

17

 18   # Create a round-robin 
database

19  $rrd->create(

20   step    => 30,

21   start    => $points[0]->[0] - 
1,

22   data_source => { name => 
"amps",

23           type => "GAUGE" },

24   archive   => { rows => 10_000 
});

25

 26  for(@points) {

27   $rrd->update(time => $_->[0],

28         value => $_->[1]);

29  }

30

 31  $rrd->graph(

32  width => 600,

33  height => 400,

34  image     => "mmdata.png",

35  vertical_label => "Amperes",

36  start     => $points[0]->[0],

37  end      => $points[-1]->[0],

38  draw      => {

39    type  => "line",

40    color => "0000FF",

41    legend => "Laptop Power",

42  }

43  );

Listing 3: mm2rrd

[1]  Listings for this article:  
http:// www. linux-magazine. com/ 
Magazine/ Downloads/ 83

[2]  Marsh project for controlling the 
Mastech MAS-345, http:// savannah. 
nongnu. org/ projects/ marsh

[3]  The Kill A Watt power measuring 
device, http:// www. p3international. 
com/ products/ special/ P4400/ 
P4400-CE. html

INFO


