
72

If you program in Perl rather than in
C or C++, you will probably be
grateful for a few things that Perl

takes off your hands: memory allocation,
counting references, watching out for
rogue pointers, freeing up memory –
these labors of Sisyphus are offloaded
from the developer's desk by Perl’s vir-
tual machine, helping developers to keep
focused on the implementation.

Down below in the engine room,
things can start to go awry. Although
you will rarely make the acquaintance of
a bug in a Perl release that actually takes
down the C-based virtual machine, add-
ins programmed by unwary C/ C++
 developers can trip you up.

Linux Pulling the Rug
Out from Under Your Feet
The script in Listing 1 uses a C extension
to deliberately take down the interpreter
with a segmentation fault. To do so, it
uses the Inline CPAN module, which
compiles the attached C code and em-

beds it dynamically in the script. The C
code after the __END__ tag sets a pointer
to an address of 0xcba00000, and then
it tells the strcpy C function to overwrite
the protected kernel address on ma-
chines that use the 32-bit x86 architec-
ture. The CPU notices what happened
to the script and triggers an interrupt, at
which point the Linux kernel pulls the
rug out from underneath the offending
program’s feet.

Figure 1 shows you how to call the
Perl script to reproduce the error in the
GNU debugger, gdb. The calling binary
is the Perl interpreter, so the debugger
will launch with gdb perl. To allow the
interpreter to process the Perl crash
script, just call the run crash command
in the debugger. After the crash, gdb will
give you the C code for the line that
caused the crash. The debugger bt (for
backtrace) command (you could use
where as an alternative) also shows the
hierarchy of the calling C function as a
stack trace.

To allow the debugger to map the
functions to lines in the C source code,
you need to compile Perl with the -g
compiler flag for troubleshooting sup-
port. When the Configure script prompts
you to decide which optimizer/debugger
flag should be used, say -g in response,
or use the following Configure command
line: ./Configure -D optimize=-g -d.

Digging down into Perl hood with the debugger

DIGGING DOWN
INTO PERL

01 #!/usr/bin/perl -w

02 use strict;

03 use Inline "C";

04 use Inline Config =>

05 CLEAN_AFTER_BUILD => 0;

06

07 c_crash(43);

08

09 __END__

10 __C__

11 int c_crash(int num) {

12 char *cp = 0xcba00000;

13 strcpy(cp, "Ouch!");

14 }

Listing 1: crash

The Perl interpreter, perl, doesn’t often crash, but if it happens, not

even the excellent Perl debugger will be able to help you.

BY MICHAEL SCHILLI

w
w

w
.sxc.h

u

@SW:Perl Debugger

Perl: Perl DebuggerPROGRAMMING

72 ISSUE 75 FEBRUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

73

If you fail to do this, analysis becomes
tricky due to the lack of references to
the C source code, and if the executable
has been stripped, you have little to
work with; let’s leave this interpretation
of disassembled assembler code in the
hands of long-bearded gurus!

You can extract in-
formation from Perl
compiled in the nor-
mal way. Although
the post-mortem is
slightly more difficult,
a trick, which I will
explain later, can help
you avoid excessive
hex juggling.

Post-Mortem
of a Script
If a crash occurs in a
running program, the
Linux kernel will nor-
mally create a core
file. If not, you may
find that bash is pre-
venting core dumps

due to the default setting of ulimit -c 0.
If you change this to ulimit -c unlimited
instead, you will find a core file (core or
even core.xxxx with the pid attached):

$./crash
Segmentation fault (core dumped)

$ ls -l core.*
-rw------- 1 mschilli mschilli U
1658880 Nov 3 21:30 core.1234

The core dump is normally stored in the
directory where the program was called,
unless /proc/sys/kernel/core_pattern says
to do otherwise. If you want to find out
what caused the crash, run the debugger
against the executable and the core file
(as in gdb perl core.1234). Your debugger
session should look something like Fig-
ure 1, and you will be able to do a stack
trace at a point just before the crash oc-
curred. What you can’t do, however, is
actually execute this memory snapshot.

The stacktrace in Figure 1 tells us that
perl crashed in a file called crash_3e35.xs
(Line 7) inside a C function called
c_crash() while trying to executed the C
strcpy() function. If you now use the de-
bugger’s print cp command to check the
target address, a value of 0xcba00000 is
returned. This explains the crash to the
investigating detective.

However, gdb only tells you about the
goings on at C level. How can you find

Figure 1: A gdb session showing the stack trace.

advertisement

PROGRAMMINGPerl: Perl Debugger

73ISSUE 75 FEBRUARY 2007W W W. L I N U X- M A G A Z I N E . C O M

out which Perl script and which line the
crash occurred in? To do so, you will
need to analyze Perl’s C data structures,
which will give you some insight into
the status of the virtual machine at the
time of the crash.

How can you ascertain that c_crash
was called with an argument of 43? To
do so, you need some knowledge of the
internal workings of Perl, which you can
glean from the perlguts and perlhack
manpages. Perl’s virtual machine pushes
function arguments onto the stack, in a
similar style to a C compiler, before they
are called by a Perl function. The PL_
stack_sp variable points to the tip of the

argument stack, and
this is also where the
value of 43 is repre-
sented as one of Perl’s
SV (Scalar Value)
structures. To extract
the integer value, you
must cast PL_stack_
sp->sv_any to
(XPVIV*); it will
return the numeric
value of the argument
passed in to c_crash()
in its xiv_iv member:

(gdb) p ((XPVIV*)U
 PL_stack_sp->
sv_any)->xiv_iv
$1 = 43

Cheers!
The gdb debugger can
also notch into an ac-
tive process. In this
case, it automatically

stops the process for a short time, and
then steps through it when requested to.
This is particularly useful when a Perl
process hangs, and you have not imple-
mented logging.

The Perl program in Listing spinner
only calls an infinite sleep() loop and
outputs its process ID and the time in
seconds since the epoch. If the process
ID is 1234, calling gdb perl -p 1234 will
latch onto the active process. Instead of
the command-line debugger, we will use
the GUI-based version, ddd. You can see
the debugger in Figure 2, and your distri-
bution should include it. ddd under-
stands gdb command-line options, so
you can replace gdb with ddd in the pre-
vious command line. You are likely to
catch the Perl process sleep()ing.

The up tells the debugger to jump up
to the next highest layer of stackframes,
that is, to move up in the function call
hierarchy. Four levels further up, the
source code window shows the short
while loop running the opcodes for a
script in the Perl interpreter (Figure 2).

These opcode structures are the building
blocks that Perl programs are built with,
after the compiler has read the source
code from the script.

Let’s try to find out what type the
global PL_op variable, which you can
see here, is. Considering the excessive
use of macros in the Perl kernel, this can
be quite difficult to do. gdb can help:

(gdb) whatis PL_op
type = OP *

A print *PL_op command in the lower
gdb window shows the content of the
data structure. PL_op is a pointer to a
structure, and the asterisk * tells gdb not
to display the address, but rather the
content of the data structure. For a per-
manent graphic display of the opcode
data in Figure 2 in the top window of
ddd, you need to enter graph display
`p PL_op` in the gdb window, and then
double-click the hex address (it’s under-
lined in blue) in the top display of the
opcode box that appears. This tells ddd
to expand the data structure hiding be-
hind this address, and display its attri-
butes in the new, larger box on the right.

The output for the OP node reveals
more than just pointers to following
OPs and an address for the code to be
executed; there is also a op_type field,
which tells us the opcode type.

Opcode Parade
To display the opcodes for an active Perl
program, you must define the following

Figure 2: The GUI debugger, ddd, has latched onto a Perl process,

and is now outputing the opcodes that Perl’s virtual machine is

currently performing.

01 #include "EXTERN.h"

02 #include "perl.h"

03 #include "XSUB.h"

04 struct op **my_special_op =
NULL;

Listing 3: optest.c

01 #!/usr/bin/perl -w

02 use strict;

03 use Config;

04

05 my($file) = @ARGV;

06 die "usage $0 file.c" unless
defined $file;

07 (my $solib = $file) =~ /\

 s.c/.so/;

08

09 my $cmd = /\

 "gcc -shared -o $solib " .

10 "$Config{ccflags} -g -fpic " .

11 "-I$Config{archlibexp}/CORE
$file";

12

13 system $cmd;

Listing 4: perl_compile

#!/usr/bin/perl -w

02 use strict;

03

 04 while(1) {

05 function(time);

06 sleep(1);

07 }

08

 09 sub function {

10 my($time) = @_;

11

 12 print "$$: $time\n";

13 }

Listing 2: spinner

Perl: Perl DebuggerPROGRAMMING

74 ISSUE 75 FEBRUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

advertisement

actions for the breakpoint set in Figure 2
by a mouse click near the code line:

commands 1
silent
p PL_op->op_ppaddr
cont
end

In this case, we want the stop at the first
breakpoint (this explains the 1), but not
to output line/ code information (silent);
instead we need the address and name
of the function that implements the
opcode (PL_op->op_ppaddr). The cont
command that then follows tells gdb
to carry on through the list of opcodes
without waiting for user input. The
lower command window in Figure 2
shows the outputs, after the process has
been continued (cont) following the
breakpoint definition.

Code Cracker
To analyze rogue Perl programs at run-
time, nextstate type opcodes are proba-
bly our best bet. They tell us which Perl
package and line of the original Perl

code the virtual ma-
chine is running.

nextstate opcodes al-
ways have a type num-
ber of 174. So, let’s de-
lete the old breakpoint
by entering delete 1, and
set a new breakpoint,
again at the end of the
while loop:

(gdb) break if U
PL_op->op_type
== 174
(gdb) display U
Perl_op_dump
(PL_op)

The if condition that fol-
lows the break tells gdb
not to stop unless Perl
is processing a type 174
opcode. The display
command defines an
action that gdb will per-
form after each break.
This is particularly use-
ful for outputting vari-
able values.

The C Perl_op_
dump() function accepts

the internal data structure of the Perl op-
code as input, and uses printf to output
the opcode’s properties. The function
comes from the Perl interpreter, and is
used by Perl developers to debug unsta-
ble developer versions. For analysis, gdb
will easily run functions located some-
where in the executable you are investi-
gating (or in its libraries), so it makes
sense to debug with existing functions.

Intensifying the Search
Even in a Perl program compiled without
the -g flag, that is, a program that does
not contain debug information, you can
ascertain the line of Perl code that is run-
ning right now. However, in this case,
gdb does not know that PL_op is an OP
type variable, or that it has a op_type
attribute. You could calculate the offset
from op_type to the start of the PL_op
structure, and then, using the Endian-
ness of the Intel processor (least signifi-
cant byte first), you can calculate the
value of the op_type attribute, and com-
pare it with 174.

However, you might prefer to use a
more simple trick: let’s put together a

shared library based on the optest.c list-
ing shown on the previous page, and use
the perl_compile script to compile it. Perl
stores the compiler options and the pa-
rameters used to configure it, and makes
them available via the Config module.
If you compile a Perl extension, you are
able to quickly set the correct compile
options and include paths.

This steps in Figure 3 give us a shared
library titled optest.so, which contains
nothing but a global pointer variable,
my_special_op, of OP ** type. This vari-
able will contain the address of the OP *
type opcode pointer, PL_op, later. As we
compiled the shared library using -g, gdb
will know the my_special_op data struc-
ture, which gives us a workaround for
querying the value of PL_op->op_type.

To allow this to happen, we need to
load the test library before the execut-
able itself, using LD_PRELOAD, as
shown in Figure 3.

After defining the breakpoint with the
known condition, and the output com-
mand, the display shows Perl processing
Line 10, and then Line 12, of the main
program after the break. Counting the
lines reveals that these are the first and
second lines of code in function() in the
spinner Listing.

Note that the nextstate opcode does
not directly reveal the file name of the
Perl script that is being processed. In-
stead, it provides the filename of the Perl
package. If this happens to be "main",
we know the interpreter is in the main
program. If the name is "LWP::
UserAgent", for example, you can typi-
cally find which file defines the package
using perldoc -m LWP::UserAgent.

After locating the problem with this
approach, troubleshooting is often triv-
ial. Also, a carefully crafted logging
strategy can help facilitate analysis of
the next problem.

For more in-depth information on the
analysis techniques introduced in this
article (in addition to many other tech-
niques), check out [2], an incredible
piece of work that all developers should
have on their desks. ■

[1] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 75/ Perl

[2] “Self-Service Linux”, Mark Wilding
and Dan Behman, Prentice Hall, 2006

INFO

Figure 3: Discovering which line of an active Perl script is cur-

rently being processed, without debug information.

Perl: Perl DebuggerPROGRAMMING

76 ISSUE 75 FEBRUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

