
scripts. This means that users can run
Perl scripts where modules would be
missing under normal circumstances.

PAR is extremely useful for developers
who normally carry a wagon load of
scripts around with them. Scripts that
you need every day to handle those
recurring tasks tend to use modules from
the seemingly infinite CPAN collection.
The four scripts we will be looking at are
from my own personal toolkit.

Password Sniffer
One tool that I always find useful is a
compact Base 64 encoder/decoder, if you
use basic authentication on the Web.

Just recently, I was confronted with a
dialog like the one shown in Figure 1,
and couldn’t remember the password.
Fortunately, the browser had a password
manager that would automatically fill
out the fields. The bad news was that the
password field was obfuscated.

A proxy between the browser and
the server soon told me that the
browser was sending a string, such
as dGVzdDpzWNyZXQ= (see Figure 2).
Unfortunately, both the browser pass-
word and the username were Base 64
encoded. Thanks to Perl, decoding this
was simple, and the script in Listing 1
soon gave me the clear text:

The Perl Archive Toolkit resolves
dependencies and puts scripts and
modules into portable archives.

Developers who work on different
machines will be familiar with this prob-
lem: Perl scripts tend to need a whole
bunch of modules. Installing the mod-
ules means configuring the local CPAN
module and takes time. Autrijus Tang’s
PAR (Perl Archive Toolkit) CPAN module
provides an approach to packaging
scripts – along with all the modules they
require – in a practical archive, in a simi-
lar way to Java with .jar files.

Working on the assumption that it will
not be installed on most systems, PAR
can create executables to provide a sure-
fire way of unpacking its archives. An
executable includes an interpreter, all the
modules you need, plus libraries and

Every developer uses a personal

collection of scripts for recurring jobs.

This month, I will be introducing you

to four scripts from my own collec-

tion. All of them require Perl modules

that are not available by default on

most machines.

BY MICHAEL SCHILLI

Creating portable archives of favorite Perl modules

Pack Your Bags

70 October 2004 www.linux-magazine.com

Perl: Portable archivesPROGRAMMING

01 #!/usr/bin/perl
02 #############################
03 # b64.pl - En/Decode Base64
04 # Mike Schilli, 2004
05 # (m@perlmeister.com)
06 #############################
07 use warnings;
08 use strict;
09
10 use Getopt::Std;
11 use MIME::Base64;
12

13 getopts "d", \my %opts;
14
15 die "usage: $0 [-d] string"
16 unless defined $ARGV[0];
17
18 if($opts{d}) {
19 print decode_base64(
20 $ARGV[0]), "\n";
21 } else {
22 print encode_base64(
23 $ARGV[0]);
24 }

Listing 1: b64.pl

Figure 1: A typical browser window during basic
authentication. Although the browser filled the
password field automatically, the password is
obfuscated.

$ b64.pl -d U

dGVzdDpzZWNyZXQ=
test:secret

The username is test, and the
password secret. This also goes
to show that Basic authentica-
tion is fairly useless if an
attacker can sniff the authentica-
tion exchange. The following
example shows that b64.pl is
also capable of encoding:

$ b64.pl test:secret
dGVzdDpzZWNyZXQ=

There are many more uses you
could put the script to: Base 64
encoding is the method of choice when
binary data needs to be converted to a
format suitable for displaying. For exam-
ple, many email programs use Base 64 to
encode binary attachments.

Percent-Hex for URL code
Many URLs also include encoded
sequences, although in an entirely differ-
ent format. When a browser uses a GET
request to send a parameter to a server,
setting the query string parameter p to
the value a b/c the URL looks like this:

http://host.com/cgi/foo?p=U
a%20b%2Fc

The browser has converted the special
characters into a %XX style format,
where XX is the hexadecimal value of
the corresponding ASCII code. Listing 2,
urlcode.pl lets you decode the hex string:

$ urlcode.pl -d a%20b%2Fc
a b/c

urlcode.pl also handles encoding. The
following syntax encodes a string for test
purposes to URL format:

$ urlcode.pl "a b/c"
a%20b%2Fc

The script is trivial, thanks to the CPAN
URI::Escape module; it simply uses
Getopt::Std to test if -d is present on the
command line, and then calls uri_escape
or uri_unescape from URI::Escape as
appropriate.

Atari Hexdump
Binary files fill up the screen with special
characters, and can even cause a termi-
nal to hang, if an unsuspecting user calls
cat to display them. less is better, but it
won’t help you much as it does not tell
you how long specific byte sequences
are. The CPAN Data::Hexdumper module
gives you a display format like the one I
had on my Atari ST1040 15 years ago
with hexcode on the left in groups of 16

bytes, and printable characters
on the right – if equivalent print-
able characters exist. Figure 3
shows hd.pl from Listing 3 dis-
playing its own source code as a
hexdump on screen.

The hd.pl program may be a
painfully trivial adaption of the
Data::Hexdumper manpage, but
even a simple tool like this can
save you a lot of time.

Perl Switcheroo
If you do a lot of work with Perl,
can hardly wait to get your fin-
gers on the latest distribution, or
simply want to know if a module
will run with an ancient version

such as 5.00503, you need an option for
jumping back and forth between various
installations. You should avoid installing
your Perl distributions below /usr and
instead use a dedicated directory, below
your home directory for example. In this
case, you would use the following syntax
to call configure for Perl 5.8.4,:

./Configure -D prefix=$HOME/U
perl-installs/perl-5.8.4 -d

Now, when you call make install, the
distribution will be installed below the
specified directory. To switch between
versions, you need to create a symbolic
link called perl-current in $HOME/perl-
installs, and point the symlink at the

71www.linux-magazine.com October 2004

PROGRAMMINGPerl: Portable archives

Figure 2: The Base 64 encoded username/password string from the
Basic authentication dialog between the Web client and the server is
easy prey for a sniffer running on a proxy.

01 #!/usr/bin/perl
02 #############################
03 # urlcode.pl: URLen/decode
04 # Mike Schilli, 2004
05 # (m@perlmeister.com)
06 #############################
07 use warnings;
08 use strict;
09
10 use Getopt::Std;
11 use URI::Escape;
12

13 getopts "d", \my %opts;
14
15 die "usage: $0 [-d] string"
16 unless defined $ARGV[0];
17
18 if($opts{d}) {
19 print uri_unescape(
20 $ARGV[0]), "\n";
21 } else {
22 print uri_escape(
23 $ARGV[0]), "\n";
24 }

Listing 2: urlcode.pl

01 #!/usr/bin/perl
02 #############################
03 # hd.pl-Hexdump
04 # Mike Schilli, 2004
05 # (m@perlmeister.com)
06 #############################
07 use strict;
08 use warnings;
09
10 use Data::Hexdumper;
11
12 my $data = join '', <>;
13
14 my$results=hexdump(
15 data => $data,
16 number_format => 'C',
17);
18
19 print$results;

Listing 3: hd.pl

pp -output=toolbox.exe b64.pl U

urlcode.pl hd.pl sp.pl

This syntax creates the toolbox.exe
binary, which includes all four scripts
and the required modules. Despite the
.exe handle, the binary will have the
right format for the operating system on
which you run pp. Assuming that the
target machine has the same operating
system platform, it is
very simple to install
the toolbox. The fol-
lowing few lines below,
install everything you
need in the user’s
~/bin/toolbox direc-
tory:

mkdir U

~/bin/toolbox
cp toolbox.exe ~/bin/toolbox
cd ~/bin/toolbox
for i in b64 urlcode hd sp ; do

ln -s toolbox.exe $i
done
export U

PATH=$PATH:~/bin/toolbox

The newly created symbolic
links b64, urlcode, hd, and
sp (note the missing .pl
extensions) all point to tool-
box.exe. If the user now calls
b64, toolbox.exe will start
and automagically detect that
the packed script b64.pl
needs to be invoked. It
extracts b64.pl from the
archive, loads the required

modules (also from the archive), and
runs the script.

PAR can support multiple platforms.
To leverage this feature, you need specify
the --multiarch parameter, and run the pp
tool on each target platform to add the
required files to the archive. Of course,
you can not create an executable in this
way, as each operating system has a dif-
ferent format. To unpack a multiarch

archive, users need to
install the PAR module
on their machines. The
Tutorial, PAR::Tutorial
included with PAR, has
more tips on using the
tool. There is one trap to
look out for, however:
developers should use
the oldest machine they

have to build the PAR archive, thus
avoiding any potential problems that
could occur with libc backward compati-
bility issues. ■

currently active version, con-
veniently installed in the
perl-installs directory, perl-
5.8.4 in the example. If
/usr/bin/perl is then deleted
and replaced by a link to
$HOME/perl-installs/perl-
current/bin/perl, scripts with
a Shebang line that reads
#!/usr/bin/perl will automati-
cally find your current choice
of Perl installation.

Of course, you will also
need to redirect any other
perl-related programs or
scripts under /usr/bin/, perl-
doc for example. After completing these
preparatory steps, you are ready to run
the sp.pl (for Switch Perl) script shown
in Listing 4. As Figure 4 shows, the script
gives you a selection of versions installed
below $HOME/perl-installs, before going
on to set the perl-current symbolic link to
reflect your choice. This makes switch-
ing a breeze!

Pack Your Bags with PAR
Now, all of the tools we have looked at
so far need a few additional modules on
your machine: b64.pl uses MIME::
Base64, and urlcode.pl URI::Escape. Nei-
ther of these modules are part of the
plain vanilla Perl distribution, and it is
safe to assume that many machines on
which you want to run the scripts will
not have the modules installed.

To create an archive with all four of
the scripts discussed in this article, you
simply need to call pp from the CPAN
PAR distribution:

72 October 2004 www.linux-magazine.com

Perl: Portable archivesPROGRAMMING

Figure 4: Switch between various
Perl versions installed on your
machine.

01 #!/usr/bin/perl
02 #############################
03 # sp.pl - Select perl install
04 # Mike Schilli, 2004
05 # (m@perlmeister.com)
06 #############################
07 use strict;
08 use warnings;
09
10 use File::Basename
11 qw(basename);
12
13 my $PERL_HOME = "$ENV{HOME}".
14 "/perl-installs";
15

16 my(@versions, $count);
17
18 for (<$PERL_HOME/perl-*>) {
19 next if -l or ! -d;
20 push @versions,
21 basename($_);
22 }
23
24 foreach my $v (@versions) {
25 print "[", ++$count,
26 "] $v\n";
27 }
28
29 $| = 1;
30 print "> ";

31 my $number = <>;
32 chomp $number;
33
34 die "Invalid choice" unless
35 exists $versions[$number-1];
36
37 unlink("$PERL_HOME/" .
38 "perl-current") or
39 warn "unlink failed ($!)";
40
41 symlink("$PERL_HOME/" .
42 "$versions[$number-1]",
43 "$PERL_HOME/perl-current")
44 or die "symlink ($!)";

Listing 4: sp.pl

Figure 3: If you need to view binary data, check out the Data::Hexdumper
Perl module. Here, we used the hd.pl script to view its own source code.

