
is acceptable for longer periods of time.
The trick is to create additional RRAs
which will store the average load (or the
peak load, depending on your require-
ments) per hour, for the previous day, or
per day in the current year.

After you have defined your round
robin archives in a RRD database, you
can use RRDtool to supply sampled val-
ues using either an explicit command, or
the Perl interface provided. The underly-
ing database engine ensures that data
sent to the round robin database will
update all relevant archives with their
various degrees of granularity. When
querying data for a given time frame
later on, RRDtool will pick the archive
with the best resolution for the window
requested and return its data. It even
draws neat graphs from it!

Using RRDtool in Perl Scripts
A round robin database includes a num-
ber of data sources (DS). The
administrator supplies four parameters
for each source when creating the data-
base: a name, a data source type, the
input step length, and the minimum and
maximum input values.

The name (for example load or
mem_usage) uniquely identifies the
input data source in the RRD. Admins
can use the data source type (DST) to
specify whether input values should be
recorded as is (GAUGE), or if they should
be used to increment a COUNTER.
RRDtool handles counter overflows
gracefully by intercepting the overflow
and correcting the result in the database.

If multiple values are acquired during
a step, RRDtool calculates and stores the
mean value. RRDtool stores na (not
available) if there are no samples within

the step, and ignores any values outside
the minimum and maximum thresholds.

The following piece of Perl code cre-
ates a database which acquires entries
from an input source called load. Every
60 seconds, the source will feed the CPU
load value to the RRD:

use RRDs;

RRDs::create(
"/tmp/load.rrd", "--step=60",
"--start=" . time() - 10,
"DS:load:GAUGE:90:0:10.0",
"RRA:MAX:0.5:1:5",
"RRA:MAX:0.5:5:10");

Unfortunately, RRDtool currently lacks
an intuitive object-oriented interface.
The slightly cryptic looking code will be
explained in detail as we move on. In
this example, RRDtool stores the data-
base in a file called /tmp/load.rrd. The
interval at which data will be fed into the
database is set to 60 seconds, using the --
step=60 option.

My Heart Goes Boom
The starting time for the database is set
to 10 seconds in the past. This is com-
mon, and the default if you omit the
--start parameter, as RRDtool rejects any
input with a timestamp equal to or
smaller than the starting time. The line
starting with DS: above defines the sin-
gle data source for the database: source
name load, input type GAUGE, at a
heartbeat of 90, and minimum and maxi-
mum thresholds of 0 and 10.0.

The heartbeat of 90 indicates that the
admin is perfectly happy to receive input
with a delay of up to 30 seconds on top
of the 60 seconds set in the --step para-

Around robin database like RRD-
tool will conveniently drop
unimportant values, sticking for-

ever with a fixed amount of storage.
Tobias Oetiker’s RRDtool [2] has

become a de-facto standard for storing
network monitoring data. To do so, it
uses a so-called round robin database
(RRD) which front-ends such as Cacti
access. Figure 1 should help you imagine
what one of the round robin archives
(RRA) of an RRD looks like.

As an example, it stores web server
load values in a limited number of stor-
age locations. The values start with 6.1
at 01:00 (top center), followed by a load
of 2.0 at 01:01 through to 2.4 at 01:04,
reading clockwise. The pointer indicates
the last value updated.

At this point, the archive is full. For
this reason, and as you can see in Figure
2, the value acquired at 01:00 is over-
written by a new value of 4.1 at 01:05.
However, admins are not only interested
in the values for the last five minutes.
They need to see how the server load has
developed over the past 30 days, or the
last 12 months.

Fuzzy by Design
Again, there is no need to store enor-
mous amounts of data to provide these
statistics – a certain degree of fuzziness

A steady flow of data samples does not automatically mean overflowing your

hard disk. An overview is typically sufficient for older data, although you may

need more detail on current events. BY MICHAEL SCHILLI

Handling data samples with RRDtool and Perl

Limiting Data

70 July 2004 www.linux-magazine.com

Perl: RRDtoolPROGRAMMING

Michael Schilli works
as a SW engineer for
AOL/ Netscape in
Mountain View, Cali-
fornia. He wrote “Perl
Power”for Addison-
Wesley and can be
contacted at
mschilli@perlmeister.com. His home-
page is at http://perlmeister.com.

T
H

E
 A

U
T

H
O

R
w

w
w

.photocase.de

meter. In this case, RRDtool will interpo-
late the data. If we were to set the
heartbeat to 24 hours and maintain the
step rate of 60, a single value per day
would be all RRDtool needed to generate
interpolated entries once a minute.

Primary Data Points
If the heartbeat is set to a lower value
than the step rate, however, multiple val-
ues must be fed per step. In this case,
RRDtool expects the data in the heart-
beat frequency, and strictly assigns a
grade of na if the step misses a beat. If
everything goes as expected and multiple
values are available per step window,
RRDtool calculates the mean value
before going on to save the so-called pri-
mary data point (PDP).

The last two lines in the code snippet
above, each starting with “RRA:”, create
two different Round Robin Archives in
which to store the data source’s input.
The number in the second-to-last col-
umn defines the number of PDPs that
the archive will collate to form an
archive point. The first archive shows a
“1” and therefore simply uses a single
value. Eventually, it will look exactly like
the round robin archive shown in Fig-
ures 1 and 2, storing one value per
minute.

The second archive, defined in the last
line of the code snippet, shows a value of
“5” and therefore collates five PDPs to
form one archive point. The second col-
umn (right after “RRA”) defines the
consolidation function (CF). If the
archive uses a 1:1 mapping between
PDPs and archive points, this setting is

irrelevant. If it collects more PDPs to
form an archive point, however, it
becomes critical: A setting of AVERAGE
derives the mean value from the PDPs;
the MAX function, on the other hand,
takes the maximum value. Other options
are MIN for the smallest and LAST for
the latest acquired value.

The magic number 0.5 in the third col-
umn is referred to as the Xfiles Factor. It
specifies what fraction of the PDPs can
be undefined (na) for the archive to
store the interpolated mean value as a
valid entry. If this value is exceeded, the
archive won’t interpolate and will store
na. The last column specifies the num-
ber of data slots the archive provides. If
all of these are occupied, it will start to
overwrite the oldest. Figure 3 shows you
how RRDtool creates PDPs from the val-
ues provided by the data source, and

how these values are then shifted to vari-
ous round robin archives.

Revealing RRD’s secrets
Listing 1 defines a test script that defines
a RRD, inputs artificially generated val-
ues, and then queries the archive data.
To allow it to provide reproducible
results, the script uses a timestamp of
1080460200 rather than the system
clock. Tip: RRD starts rounding if you do
not use a number that is divisible by 60
(or 300 for the five minute archive). This
will sort itself out in the end, but for the
purpose of this demonstration, less
unwieldy figures are preferable. Lines 19
through 24 create the RRD as described.

The for loop in line 28 runs from 0
through 40 and calls RRDs::update() to
push the following timestamp/load
value combinations to the RRD:

71www.linux-magazine.com July 2004

PROGRAMMINGPerl: RRDtool

Figure 1: The round robin archive stores a fixed number of acquired values
and overwrites older values to make room for newer ones.

[01:01:00] 2,0

[01:02:00] 2,5 [01:03:00] 3,0

[01:04:00] 2,4

[01:00:00] 6,1

Figure 2: The old value, measured at 01:00 is replaced by a value for 01:05;
the pointer moves one step farther.

[01:01:00] 2,0

[01:02:00] 2,5 [01:03:00] 3,0

[01:04:00] 2,4

[01:05:00] 4,1

Figure 3: RRDtool uses the sample values from the data source to create primary data points (PDPs).
RRDtool then uses PDPs to fill the round robin archive (RRA).

6,1

3,2

2,0 2,5

2,52,06,1 3,0

3,0 2,4

2,4

5,0 6,3 7,0

60 s

2,0

60 s

2,0 3,0

60 s

Primary Data
Points

Samples

RRA:MAX:
0.5:1:5

RRA:MAX:
0.5:5:10

RRA:AVERAGE:
0.5:5:10

6,1

data points in the archive), and $names
(a reference to an array with the names
of all data sources).

Incidentally, $step is not necessarily
the data acquisition interval defined in
the --step parameter for the database. For
an archive that consolidates multiple
PDPs to create an archive point, $step is
calculated by multiplying the sample
rate by the number of samples per
archive point.

Line 39 in Listing 1 uses the fetch()
function defined in line 47 to launch a
query in the timeslot for the last five
minutes. The results are as follows:

Last 5 minutes:
1080462300: N/A
1080462360: 5.6
1080462420: 5.7
1080462480: 5.8
1080462540: 5.9
1080462600: 6

In this case, RRDtool chooses the short-
term archive with a 60 second sample
rate. As the archive only holds five val-
ues, the oldest sample has been
discarded and shows as N/A (for Not
Applicable). If the user calls RRDs::
fetch() to query values for a larger time-
frame, the last 30 minutes, for example,
as shown in line 43, values from the

second archive with a sample rate of 300
seconds are returned instead:

Last 30 minutes:
1080460800: 3
1080461100: 3.5
1080461400: 4
1080461700: 4.5
1080462000: 5
1080462300: 5.5
1080462600: 6

The figures represent the maximum val-
ues for each interval, as the second
archive was defined with the MAX CF.
The RRDs module will not attempt to
display values from a combination of
archives. Instead, it selects a suitable
archive and uses that archive’s granular-
ity to display a series of results with a
constant sample rate.

The rrdload script in Listing 2 shows
how a web server admin can put RRD-
tool to use. The following cronjob
launches it every five minutes:

*/5 * * * * /home/mschilli/binU
/rrdload -u

When called with the -u option, it
updates a round robin archive with the
current system load value. Called with
the -g option instead, it produces a

1080460200:2
1080460260:2.1
1080460320:2.2
...

There is no need to supply a timestamp
for normal operations. If we provide the
letter “N” instead of the number of sec-
onds since the epoch, RRDtool will
simply use the current system time. The
values provided by the example are arti-
ficial values for the system load. The test
script starts at 2, and raises the value by
0.1 at each step.

Data Analysis
To query an archive, RRDs::fetch()
expects the query interval, along with
the CF used previously to define the
database. It uses these parameters to
determine the archive providing the best
resolution for a given query. The module
responds with an error message if you
specify a CF for which there is no archive
defined. In line 53, RRDs::fetch() retrie-
ves the data points from the archive in
$data, and returns them in a reference to
an array, which in turn contains refer-
ences that each point to an array of
floating point values for a single archive
point. The other return values for
RRDs::fetch() are $dbstart (starting time
for this RRD), $step (interval between

72 July 2004 www.linux-magazine.com

Perl: RRDtoolPROGRAMMING

01 #!/usr/bin/perl
02 #############################
03 # rrdtest - Feed test data
04 # Mike Schilli, 2004
05 # (m@perlmeister.com)
06 #############################
07 use warnings;
08 use strict;
09
10 use RRDs;
11
12 my $DB = "/tmp/mydemo.rrd";
13 my $start= 1080460200;
14 my $dst = "MAX";
15 my $nof_iterations = 40;
16 my $end = $start +
17 $nof_iterations * 60;
18
19 RRDs::create(
20 $DB, "--step=60",
21 "--start=" . ($start-10),
22 "DS:load:GAUGE:90:0:10.0",

23 "RRA:$dst:0.5:1:5",
24 "RRA:$dst:0.5:5:10",
25) or die "Cannot create " .
26 "rrd ($RRDs::error)";
27
28 for(0..$nof_iterations) {
29 my $time = $start + $_ *60;
30 my $value = 2 + $_ * 0.1;
31
32 RRDs::update(
33 $DB, "$time:$value") or
34 die "Can't update rrd".
35 " ($!)";
36 }
37
38 print "Last 5 minutes:\n";
39 fetch($end - 5*60,
40 $end, $dst);
41
42 print "Last 30 minutes:\n";
43 fetch($end - 30*60,
44 $end, $dst);

45
46 #############################
47 sub fetch {
48 #############################
49 my($start,$end, $dst) = @_;
50
51 my ($dbstart, $step,
52 $names, $data) =
53 RRDs::fetch($DB,
54 "--start=$start",
55 "--end=$end", $dst);
56
57 foreach my $row (@$data) {
58 print "$start: ";
59 $start += $step;
60 foreach my $val (@$row) {
61 $val = "N/A"
62 unless defined $val;
63 print "$val\n";
64 }
65 }
66 }

Listing 1: rrdtest

allows users to query the hourly values
for the past week (168 = 24·7). The
third and last archive finds the daily
peak values among 288 5-minute sam-
ples and stores 365 of them to create an
annual statistic.

The script uses the RRDs::graph()
function to create the PNG formatted
graph. --vertical-label provides the label
for the load axis. The following argu-
ments:

"DEF:myload=$DB:load:MAX",
"LINE2:myload#FF0000"

tell the RRDs module to collect
results from the file that $DB
points to, and to assign them to
the graph variable myload. This
query searches for values gener-
ated by the data source load, in

an archive that uses data collected via
the MAX consolidation function for the
period defined in lines 46 through 48
(--start to --end).

RRDtool has the unfortunate habit of
filling the database with random values
first, and then providing inaccurate
information for the starting time. This
is why the rrd_start_time() function
defined in line 56 ff. keeps accessing the
archive and skipping data until it comes
up with something that makes sense.
The function returns the date of the first
sample, and the graph call starting in
line 42 accepts it in line 47.

The RRDs::fetch() call in line 60 goes
back exactly one day, if no additional
parameters are set. If you want to view a
graph for a longer period, you can spec-
ify --start to set a different starting point.
Negative values set a time offset relative
to the current time:

"--start", -365*24*3600

will display any available data, but with
a minimum of granularity. In any case,
the graph function draws a neat graph in
red (#FF0000) and with a line width of
exactly two pixels (LINE2). It saves the
images in a PNG file named load.png in
the web server’s document path defined
in $SERVER.

The RRDs Perl module, which uses
RRDtool’s shared library, is not available
from CPAN, but it is provided with
the RRD distribution. To install the mod-
ule, load the latest tarball from [2], and
enter ./configure; make to run a build.
The RRDs.pm distribution is located in
the perl-shared subdirectory. Use perl
Makefile.PL; make install to install. ■

graphical representation of
the relevant archive points.
Figure 4 shows an example of
a PNG formatted graph that
the script stored in the Web
server document path. This
allows yours truly to monitor
the system load on the shared
system at perlmeister.com.

Drawing Graphs
The code in line 20 ff. of Listing 2 creates
three archives. The first archive can
accommodate 288 data points; it has
enough room to store values sampled
every five minutes for a whole day
(24·12). The second archive finds the
peak value from twelve samples, that is
for an hour’s data (12·5 minutes = 60
minutes), and stores 168 of them. This

74 July 2004 www.linux-magazine.com

Perl: RRDtoolPROGRAMMING

[1] Listings for this article:
http://www.linux-magazine.com/
Magazine/Downloads/44/Perl

[2] RRDtool: http://people.ee.ethz.ch/
~oetiker/webtools/rrdtool/

INFO

01 #!/usr/bin/perl
02 #############################
03 # rrdload - Measure CPU Load
04 # Mike Schilli, 2004
05 # (m@perlmeister.com)
06 #############################
07 use warnings;
08 use strict;
09
10 use RRDs;
11 use Getopt::Std;
12
13 getopts("ug", \my %opts);
14
15 my $DB = "/tmp/load.rrd";
16 my $SERVER = "/www/htdocs";
17 my $UPTIME = "uptime";
18
19 if(! -f $DB) {
20 RRDs::create($DB,
21 "--step=300",
22 "DS:load:GAUGE:330:U:U",
23 "RRA:MAX:0.5:1:288",
24 "RRA:MAX:0.5:12:168",
25 "RRA:MAX:0.5:288:365",
26) or die "Create error: " .
27 "($RRDs::error)";
28 }
29
30 if(exists $opts{u}) {
31 my $uptime = `$UPTIME`;
32 my ($load) =
33 ($uptime =~ /(\d\.\d+)/);
34
35 RRDs::update($DB,

36 time() . ":$load") or
37 die "Update error: " .
38 "($RRDs::error)";
39 }
40
41 if(exists $opts{g}) {
42 RRDs::graph(
43 "$SERVER/load.png",
44 "--vertical-label=" .
45 "Load perlmeister.com",
46 "--start=" .
47 rrd_start_time(),
48 "--end=" . time(),
49 "DEF:myload=$DB:load:MAX",
50 "LINE2:myload#FF0000") or
51 die "graph failed " .
52 "($RRDs::error)";
53 }
54
55 #############################
56 sub rrd_start_time {
57 #############################
58 my ($start, $step, $names,
59 $data) =
60 RRDs::fetch($DB, "MAX");
61
62 foreach my $line (@$data) {
63 if(!defined $line->[0]) {
64 $start += $step;
65 next;
66 }
67 return $start;
68 }
69 }

Listing 2: rrdload

Figure 4: This graphic, which was created using RRDtool, shows the load
on perlmeister.com’s shared server over the course of one night.

