
Let’s write a screen scraper: a program
acting like a web browser, happily click-
ing through web pages, but without the
manual user interaction like mouse-
clicking or typing on the keyboard.

CPAN Modules to the rescue
WWW::Mechanize by Andy Lester pro-
vides the framework for coding screen
scrapers in Perl. WWW::Mechanize::
Shell, an addition by Max Maischein,

spawns a shell-like command interpreter
to control a virtual browser. Developers
steer the session interactively, and, on a
push of a button, convert the command
sequence into a permanent Perl script.

The session description is a logical
abstraction (for example “follow the link
containing the string ‘xxx’ on the current
page”) and ensures that the script will
not break, just because the format of the
website has been slightly modified.

In California, you can select your own
license plates, for a small charge. This
explains why the plates on my 13-

year-old Acura Integra read “PERL
MAN” (see Figure 1). The department of
motor vehicles wears a progressive hat
and provides a website where you can
check the availability of your customized
plates. Sadly, most find access to the site
too slow. This article shows how to use a
Perl script to emulate web requests.

Sometimes it is just too much trouble

to dig down through the structure of

a website simply to find a few snip-

pets of information. A Perl module

called WWW::Mechanize::Shell facili-

tates writing so-called screen

scrapers, tools that act like browsers

and automate website access.

BY MICHAEL SCHILLI

Automating website access with screen scrapers

Simple Data Scraper

72 April 2004 www.linux-magazine.com

Perl: Screen ScrapersPROGRAMMING

Figure 1: The magnificent PERL MAN: 13 years old, but that doesn’t stop it
from drag racing those sports cars at San Francisco’s traffic lights.

Figure 2: The welcome page of the Californian Department of Motor Vehi-
cles. The highlighted link leads to a page where Californians can create their
own personalized license plates.

Most conveniently, you can use the
CPAN shell to install the WWW::Mecha-
nize and WWW::Mechanize::Shell
modules. Both require additional mod-
ules, which are easy to install thanks to
automatically resolved dependencies. To
allow the screen scraper to handle
HTTPS pages, the IO::Socket::SSL mod-
ule is also required. The browser
emulation shell is called as follows:

perl -MWWW::Mechanize::U
Shell -eshell

This displays a prompt to the user, wait-
ing for input. To load the Californian
Department of Motor Vehicles’ Web page,
you can then type get http://www.
dmv.ca.gov. The shell will respond with
Retrieving http://www.dmv.ca.gov(200),
to indicate that the script has successfully
loaded the initial page (HTTP code 200).

The browser rendering of the page in
Figure 2 shows the link to “Personalized
Plates”, which is what we are looking
for. We can now enter the links com-
mand to find out which links the shell
has discovered on this page, and display
a list:

>links
...
[14] Vehicle Industry U

& Commercial Permits
[15] Personalized Plates
[16] Disabled Placards
...

Regular Expressions for Links
The user could now follow link number
15 by typing open 15, but the numerical
value would soon lose its validity, as the
number and order of links on a page that
is maintained regularly will tend to

change. In other
words, this process
should be more
abstract, to avoid
breaking the script,
if the authority adds
new links to the
page. The next com-
mand searches for a
link that contains
the text string Per-
sonalized, and then
follows that link:

>open /Personalized/

If the regular expression matches multi-
ple links on the page, the shell will
display a selection menu. In our case,
there is only one match; this causes the
shell to display the following

Found 15
(200)

This moves the virtual browser on to the
next page which includes a link contain-
ing the text string order Special Interest
and Personalized license plates. Search-
ing for this string, open "/order Special
Interest/", leads to another page that
contains a number of HTML forms. Note
that the regular expression in the open
command just referred to has to be
enclosed in double quotes, as it contains
blanks. Unquoted, this would confuse
the shell, which uses blanks to split a
command and its arguments. The user
can now display the forms on the current
page using the forms command:

>forms
...

Form [2]
POST https://vrir.dmv.ca.gov/U
ipp/ PerLicensePlateServlet [U
personalized]
page=Select (hidden)
Submit2=Order Personalized U

(submit)
...

Form #2, the one labelled personalized, is
what we are looking for. The form can be
selected using the form "personalized"
command and then typing submit. On
the next page, the user can then access
another form with dropdown menus and
radio buttons to specify the vehicle type,
the plate design and other things. The
shell’s fillout command comes in useful
for complex forms like this, allowing the
user interactively to define values for the
individual fields in the form. The dialog
shown in Figure 3 illustrates this. To
select the default option, like to disable
the kidpic radio button, just press the
Enter key. After filling out the form, enter
the submit command to transmit the
form to the server.

Your own License Plate
The next page finally allows the user to
select a personalized plate. As the
browser rendering in Figure 4 shows, an
HTML form is again used for this pur-
pose. The form uses individual (!)
selection boxes to collect the letters for
the personalized plate. Again, fillout will
provide the required dialog box, and sub-
mit will transmit the data.

A Script at the Push
of a Button
This is where things start getting inter-
esting. All we need to do, to transform

the shell session so far
into a reusable Perl
script, is to enter the
script command. Imme-
diatley, the ready-to-use
script will show up on
standard output. Snap it
up via cut-and-paste, or
use script filename, to
store it in a file on disk.

This is how I created
the dmv script in Listing
1. There are a few modi-
fications. The user now
enters the license plate

73www.linux-magazine.com April 2004

PROGRAMMINGPerl: Screen Scrapers

Figure 3: The shell provided by the WWW::Mechanize::Shell module acts
just like a Web browser. In this example, the user has just filled out a form
using a dialog provided by the the fillout command.

Figure 4: If you are registering a vehicle in California, you can create
your own personalized license plate, including a stylish background,
on the Department of Motor Vehicles website.

Fixed assigns some hard coded values,
while Interactive tells the form filler code
to prompt the user for input at runtime.
After collecting all the values for the form
variables, the form filler can get to work.
The fill_form method is run against the
WWW::Mechanize agent’s current
HTML::Form object to fill out the form.

The script accesses the DMV welcome
page, navigates the links and forms, and
finally uses a for loop starting in line 55
to enter the supplied strings into the
selection boxes. If the license plate con-
tains less than 7 letters, lines 59-61 add
some padding. The submit in line 75
uses SSL to transmit the data to the
server, and the shell accepts the HTML
formatted results page.

There Can Only Be One
If the results page says something like
not available, you can assume that the
combination is already in use, or that the
language is unacceptable to the depart-
ment of motor vehicles. The script issues
a warning in this case.

Assuming that the license plate has
been okayed, an order form appears. The
script checks for the Complete Order
Form text string, and responds by dis-
playing XXX: available. The response,
PERLMAN: not available, confirms that
PERL MAN is already in use, and will be
so for quite a while in the future. There
can only be one! ■

details on the command line, as in dmv
PERLMAN. Line 13 exits, if this parame-
ter is missing. The constructor of the
WWW::Mechanize object has the
autocheck option enabled, and runs the
browser simulator in a mode that imme-
diately terminates the program if the
website cannot be found.

Line 26 points the simulator to the
welcome page. The follow() method in
line 28 uses a regular expression to
locate a link containing the Personalized
text string. Line 30 performs another
regex-controlled jump. Line 32 selects
the form with the personalized label, and
the submit() method that follows acti-
vates the Submit button of the form,
which is otherwise empty.

The WWW::Mechanize::FormFiller
object created in line 22 takes care of fill-
ing out the form that then appears. The
add_filler() method specifies the field
name, the input method and the value:

$fi->add_filler('leased' U

=> Fixed => 'N');

74 April 2004 www.linux-magazine.com

Perl: Screen ScrapersPROGRAMMING

[1] Listings for this article:
http://www.linux-magazine.com/
Magazine/Downloads

[2] Californian Department of Motor
Vehicles: http://www.dmv.ca.gov

INFO

Michael Schilli works
as a Web engineer for
AOL/Netscape in
Mountain View, Cali-
fornia. He wrote “Perl
Power”for Addison-
Wesley and can be
contacted at
mschilli@perlmeister.com. His home-
page is at http://perlmeister.com.

T
H

E
 A

U
T

H
O

R

001 #!/usr/bin/perl
002 #############################
003 # dmv -- Check CA plates
004 # Mike Schilli, 2003
005 # (m@perlmeister.com)
006 #############################
007 use strict;
008 use warnings;
009
010 use WWW::Mechanize;
011 use

WWW::Mechanize::FormFiller;
012
013 die "usage: $0 XXXXXXX"
014 unless defined $ARGV[0];
015
016 $ARGV[0] =~ s/\s+//g;
017
018 my $agent =
019 WWW::Mechanize->new(
020 autocheck => 1);
021
022 my $fi =
023 WWW::Mechanize::FormFiller->
024 new();
025
026 $agent->get(
027 'http://www.dmv.ca.gov');
028 $agent->follow(
029 qr(Personalized));

030 $agent->follow(
031 qr(order Special Interest));
032 $agent->form("personalized");
033 $agent->submit();
034
035 $fi->add_filler(
036 'vehicletype' =>
037 Fixed => 'AUTO');
038 $fi->add_filler(
039 'leased' =>
040 Fixed => 'N');
041 $fi->add_filler(
042 'platetype' =>
043 Fixed => 'R');
044 $fi->add_filler(
045 'kidpic' =>
046 Fixed => '');
047 $fi->add_filler(
048 'Submit2' =>
049 Fixed => '');
050
051 $fi->fill_form(
052 $agent->current_form);
053 $agent->submit();
054
055 for(0..6) {
056 $fi->add_filler(
057 "LicPltCharAry$_" =>
058 Fixed =>
059 $_ > length $ARGV[0] ?

060 "" : substr($ARGV[0],
061 $_, 1));
062 }
063
064 for(0..6) {
065 $fi->add_filler(
066 "HalfSpace$_" =>
067 Fixed => '');
068 }
069
070 $fi->add_filler(
071 'Submit2' => Fixed => '');
072 $fi->fill_form(
073 $agent->current_form);
074
075 $agent->submit();
076
077 if($agent->content() =~
078 /not available/) {
079 print "$ARGV[0]: " .
080 "not available\n";
081 } elsif($agent->content() =~
082 /Complete Order Form/) {
083 print "$ARGV[0]: " .
084 "available\n";
085 } else {
086 print "Unexpected: ",
087 $agent->content(),
088 "\n";
089 }

Listing 1: dmv

